• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance analysis of a large-scale ground source heat pump system

Naicker, Selvaraj Soosaiappa January 2015 (has links)
The UK government’s Carbon Plan-2011 aims for 80% carbon emission reduction by 2050, and the 2009 UK National Renewable Energy Action Plan has set a target of delivering 15% of total energy demand by renewable energy sources by 2020. Ground Source Heat Pump (GSHP) systems can play a critical role in reaching these goals within the building sector. Achieving such benefits relies on proper design, integration, installation, commissioning, and operation of these systems. This work seeks to provide evidence to improve the practices in design, installation and operations of large GSHP systems. This evidence has been based on collection and analysis of data from an operational large-scale GSHP system providing heating and cooling to a university building. The data set is of significance in that it is collected from a large-scale system incorporating fifty-six borehole heat exchangers and four heat pumps. The data has been collected at high frequency since the start of operation and for a period of three years. The borehole heat exchanger data is intended to form a reference data set for use by other workers in model validation studies. The ground thermal properties at the site have been estimated using a novel combination of numerical model and parameter estimation methods. The utility of the reference data set has been demonstrated through application in a validation study of a numerical borehole heat exchanger model. The system heat balances and power consumption data have firstly been analysed to derive a range of performance metrics such as Seasonal Performance Factors. Analysis has been carried out at the system and individual heat pump level. Annual performance has been found satisfactory overall. A series of analyses have been carried out to investigate the roles of circulating pump energy, control system operation and dynamic behaviour. Monitoring data from one of the heat pumps has also been analysed in further detail to make comparisons with manufacturer’s steady-state performance data and with consideration to variations in fluid properties. Some modest degradation from stated performance has been identified. The most significant operational factors accounting for degradation of overall system performance have been excessive pump energy demands and short cycling behaviour. Some faults in operation of the system during the monitoring period have also been identified. A series of recommendations are made as to ways to improve the design and operation of large-scale GSHP systems based on this evidence. These recommendations are chiefly concerned with better design for part-load operation, reduction in pump energy demands and more robust control systems.
2

Performance evaluation of ground source heat pump heating systems in Stockholm

BÖRJESSON, MARCUS January 2020 (has links)
GSHP systems are common in Sweden but there are few evaluations quantifying the performance of the systems and highlighting problem that occurs during operations. The research project Annex 52 Long-term performance measurement of GSHP systems serving commercial, institutional and multifamily building part of IEA HPT TCP proves the need to systematically be able to evaluate GSHP systems. This thesis aims to expand the knowledge of how to evaluate GSHP systems and provide case studies for Annex 52. Three residential ground source heating systems used for heating has been evaluated and analyzed in this study. The evaluation has consisted of three parts. The first part analyzes the operation and stability of the GSHP systems. The second part consist of a detailed study of the performance of the GSHP systems. The seasonal performance factor has been calculated for different system boundaries based on the work done by SEPEMO. In addition, a method on how to evaluate the efficiency of the heat pumps based on the two temperature levels, source side temperature and the heat sink temperature, that the heat pump is operating at throughout a year has been developed within this thesis. This has included a method on how to normalize the temperatures based on the operation of the heat pump in order to quantify one temperature for each the two temperature levels. The third part consist of a comparison of the mean secondary fluid temperature between the calculated temperature using the software EED and the measured temperatures. This includes a comparison evaluation and sensitivity analysis on input parameters during the design of the borehole heat exchanger fields. This study has expanded the available reference cases of GSHP systems in Sweden. It also can be used as a guideline for those who will evaluate future GSHP systems. Designers of GSHP system will also benefit from the recommendations listed in this thesis regarding instrumentation and possible problems that may occur. The results show that the evaluation successfully managed to quantify the performance and operational issues that have occurred for each system. The method developed in this study was able to quantify the operation of the different systems based on the temperature levels and can be used for future GSHP evaluations of similar system type. / Bergvärmesystem är vanligt förekommande i Sverige men trots detta finns det få studier där prestandan har utvärderats och de vanligt förekommande problemen under drift har belysts. Forskningsprojektet Annex 52 Annex 52 Long-term performance measurement of GSHP systems serving commercial, institutional and multi-family building som är en del av IEA HPT TCP visar på behovet av att systematisk utvärdera bergvärmesystem. Detta examensarbete syftar till att utveckla och bidra till kunskap om hur bergvärmesystem kan utvärderas och att bidra med exempelstudier till Annex 52. Inom detta examensarbete har tre bergvärmesystem som betjänar flerbostadshus utvärderats och analyserats. Utvärderingen bestod av tre analyser. I den första analyserades driften av bergvärmesystemen och hur stabilt systemet har varit historiskt. Detta följdes av en detaljerad analys av olika nyckeltal för bergvärmesystemen. Årsverkningsgraden har beräknats för olika gränsdragningar vilka baseras på det tidigare arbetet utfört av SEPEMO. Inom detta examensarbete har även en metod tagits fram för att utvärdera verkningsgraderna för en värmepump baserat på de två temperaturnivåerna, köldbärarsidan och värmebärarsidan, som värmepumpen arbetar med under ett år. Till detta har en metod tagits fram om hur temperaturen kan normaliserats baserat på driften av värmepumparna för att kvantifiera en temperatur vardera för de två temperaturnivåerna. I den tredje utvärderingen jämfördes den beräknade medelfluidtemperaturen av köldbäraren i borrhålen med den uppmätta temperaturen. Till detta utfördes en känslighetsanalys av hur indata av dessa beräkningar påverkar resultaten.

Page generated in 0.011 seconds