• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 27
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 185
  • 117
  • 96
  • 66
  • 30
  • 25
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structural characterization of a putative GTP-binding protein, EngB.

January 2008 (has links)
Chan, Kwok Ho. / Thesis submitted in: November 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 124-129). / Abstracts in English and Chinese. / Statement --- p.I / Acknowledgements --- p.II / Abstract --- p.III / 摘要 --- p.IV / Table of Contents --- p.V / Abbreviations --- p.XIII / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- GTPase in general --- p.1 / Chapter 1.2 --- G proteins and GTP switch --- p.2 / Chapter 1.3 --- Structural similarities in GTPase --- p.3 / Chapter 1.4 --- G proteins in bacteria --- p.3 / Chapter 1.5 --- Background information of the protein family EngB --- p.4 / Chapter 1.6 --- Basic information of EngB in Thermotoga maritima --- p.5 / Chapter 1.7 --- Objectives of this work --- p.6 / Chapter Chapter 2 --- Materials and methods / Chapter 2.1 --- Materials / Chapter 2.1.1 --- Chemical reagents --- p.8 / Chapter 2.1.2 --- Buffers / Chapter 2.1.2.1 --- Preparation of buffers --- p.10 / Chapter 2.1.2.2 --- Buffers for common use --- p.11 / Chapter 2.1.3 --- Expression strains and plasmids --- p.14 / Chapter 2.1.4 --- Primer list --- p.14 / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Preparation of competent cells --- p.15 / Chapter 2.2.2 --- Cloning / Chapter 2.2.2.1 --- Cloning of target genes by PCR --- p.15 / Chapter 2.2.2.2 --- Agrose gel electrophoresis --- p.17 / Chapter 2.2.2.3 --- Extraction and purification of DNA from agarose gel --- p.17 / Chapter 2.2.2.4 --- Restriction digestion of DNA --- p.18 / Chapter 2.2.2.5 --- Ligation of digested insert and expression vector --- p.18 / Chapter 2.2.2.6 --- Transformation and plating out transformants for miniprep --- p.19 / Chapter 2.2.2.7 --- Verification of insert by PCR --- p.20 / Chapter 2.2.2.8 --- Mini-preparation of plasmid DNA --- p.21 / Chapter 2.2.2.9 --- Confirmation of miniprep product by restriction enzyme digestion..… --- p.22 / Chapter 2.2.2.10 --- Sequencing of the plasmid DNA --- p.23 / Chapter 2.2.3 --- Expression of the recombinant MBP-TM EngB protein and SBP-CBP EC EngB / Chapter 2.2.3.1 --- Transformation for protein expression --- p.23 / Chapter 2.2.3.2 --- Preparation of starter culture --- p.24 / Chapter 2.2.3.3 --- Expression of recombinant protein --- p.24 / Chapter 2.2.3.4 --- Cell harvesting --- p.24 / Chapter 2.2.3.5 --- Releasing the cell content --- p.25 / Chapter 2.2.3.6 --- Check for protein expression by SDS-PAGE --- p.25 / Chapter 2.2.4 --- Purification of TM EngB / Chapter 2.2.4.1 --- SP ion-exchange chromatography --- p.27 / Chapter 2.2.4.2 --- Thrombin digestion to remove MBP tag --- p.28 / Chapter 2.2.4.3 --- Heparin affinity chromatography --- p.29 / Chapter 2.2.4.4 --- Gel filtration chromatography --- p.29 / Chapter 2.2.5 --- Purification of SBP-CBP EC EngB / Chapter 2.2.5.1 --- SP ion-exchange chromatography --- p.30 / Chapter 2.2.5.2 --- Gel filtration chromatography --- p.31 / Chapter 2.2.6 --- Protein concentration quantitation --- p.32 / Chapter 2.2.7 --- Crystallography of TM EngB / Chapter 2.2.7.1 --- Crystallization preparation --- p.32 / Chapter 2.2.7.2 --- Crystallization screening by sitting drop method --- p.32 / Chapter 2.2.7.3 --- Optimization of crystallization conditions --- p.33 / Chapter 2.2.7.4 --- X-ray diffraction --- p.33 / Chapter 2.2.8 --- Thermodynamics studies of proteins / Chapter 2.2.8.1 --- Preparation of protein sample --- p.34 / Chapter 2.2.8.2 --- Guanidine-induced denaturation experiment --- p.34 / Chapter 2.2.8.3 --- Thermal-induced denaturation experiment --- p.35 / Chapter 2.2.9 --- Binding assay to study affinity for ligands --- p.36 / Chapter 2.2.9.1 --- Using GDP analogue mant-GDP to detect formation of enzyme-ligand complex (TM EngB-mant-GDP) --- p.36 / Chapter 2.2.9.2 --- Basic information of Fluorescence spectroscopy --- p.36 / Chapter 2.2.9.3 --- Determination of λem and λex --- p.37 / Chapter 2.2.9.4 --- Studying ligand affinity by titration with ligand analogue --- p.37 / Chapter 2.2.10 --- Pull down experiment to study interacting partner of E. coli EngB --- p.38 / Chapter 2.2.10.1 --- Preparing protein extracts from E. coli --- p.38 / Chapter 2.2.10.2 --- Preparing streptavidin resin --- p.39 / Chapter 2.2.10.3 --- Binding of dual-tagged E. coli EngB to streptavidin resin --- p.39 / Chapter 2.2.10.4 --- Purifying protein using the prepared streptavidin resin --- p.40 / Chapter 2.2.10.5 --- Preparing calmodulin resin --- p.41 / Chapter 2.2.10.6 --- Binding of dual-tagged E.coli EngB to calmodulin resin --- p.41 / Chapter 2.2.10.7 --- Analysis of dual-tag affinity purified protein --- p.42 / Chapter 2.2.11 --- Silver staining of acrylamide gel / Chapter 2.2.11.1 --- Staining reagents --- p.42 / Chapter 2.2.11.2 --- Staining procedures --- p.43 / Chapter Chapter 3 --- Structure determination of T. maritima EngB by X-ray crystallography / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Generation of TM EngB expression construct --- p.45 / Chapter 3.3 --- Expression and purification of TM EngB --- p.46 / Chapter 3.4 --- TM EngB was crystallized with freshly purified TM EngB --- p.47 / Chapter 3.5 --- Data processing of diffraction data and structure refinement of TM EngB …… --- p.48 / Chapter 3.6 --- Apo-form TM EngB was obtained by unfolding and refolding --- p.49 / Chapter 3.7 --- Crystallization of apo-form TM EngB --- p.50 / Chapter 3.8 --- Data processing of diffraction data and structure refinement of apo-form TM EngB --- p.51 / Chapter 3.9 --- Producing EngB-GDP complex crystal from apo-from EngB --- p.52 / Chapter 3.10 --- TM EngB is a monomer in solution --- p.54 / Chapter 3.11 --- Summary of chapter three --- p.55 / Tables and figures of chapter three --- p.57 / Chapter Chapter 4 --- Structural details of TM EngB / Chapter 4.1 --- Introduction --- p.67 / Chapter 4.2 --- Overall fold of TM EngB --- p.67 / Chapter 4.3 --- Mode of nucleotide binding of TM EngB --- p.68 / Chapter 4.4 --- Structural differences in switch I region between chain A and chain B in crystal structure of TM EngB/GDP complex --- p.70 / Chapter 4.5 --- Structural difference between TM EngB/GDP complex and apo TM EngB --- p.73 / Chapter 4.6 --- Summary of chapter four --- p.73 / Tables and figures of chapter four --- p.76 / Chapter Chapter 5 --- Purified TM EngB is Active for binding guanine nucleotide but inactive for GTPase hydrolysis activity / Chapter 5.1 --- Introduction --- p.88 / Chapter 5.2 --- Studying ligand affinity by competitive binding experiment --- p.88 / Chapter 5.3 --- GDP binds to TMEngB with higher affinity than GTPyS --- p.91 / Chapter 5.4 --- TM EngB showed very low intrinsic GTPase activity --- p.92 / Chapter 5.5 --- Discussion --- p.93 / Tables and figures of chapter five --- p.95 / Chapter Chapter 6 --- Thermostability of EngB of T. maritima / Chapter 6.1 --- Introduction --- p.98 / Chapter 6.2 --- Guanidine hydrochloride - induced unfolding --- p.98 / Chapter 6.3 --- Thermal-induced unfolding --- p.99 / Chapter 6.4 --- Structural comparison of thermophilic and mesophilic EngB --- p.100 / Chapter 6.5 --- Discussion --- p.102 / Tables and figures of chapter six --- p.105 / Chapter Chapter 7 --- Construction of a dual-tag affinity pull-down system for finding interacting partner of EngB / Chapter 7.1 --- Introduction --- p.112 / Chapter 7.2 --- Preparation of dual-tagged E.coli EngB / Chapter 7.2.1 --- Cloning of SBP-CBP-EC EngB expression construct --- p.113 / Chapter 7.2.2 --- Expression and purification of SBP-CBP-EC EngB --- p.114 / Chapter 7.3 --- Pull down using dual tagged E.coli EngB as bait to isolate potential interacting partners of EngB --- p.114 / Chapter 7.4 --- Discussion --- p.115 / Tables and figures of chapter seven --- p.117 / Chapter Chapter 8 --- Conclusion --- p.122 / References --- p.124
42

Design and Implementation of a SATA Host Controller on a Spartan-6 FPGA

Gonzalez, Maya January 2012 (has links)
At Saab Dynamics AB there are a number of projects where cameras are an important part of a sensor system. Examples of such projects are monitoring for civil security and 3D mapping, where several cameras are used. The cameras can for example be located in airplanes, helicopters or cars and therefore it is important to have a robust function for recording data. One way to achieve a quick recording with sufficient storage size is to use SATA flash disks. To reduce the size and power consumption of the recording equipment and to enable project-specific adaptations it is desirable to use an FPGA as an interface to SATA devices. This thesis concerns the development of such an interface implemented on an FPGA. The theory behind the SATA interconnect standard is described along with the design work and its challenges.
43

Molecular mechanisms of G protein-receptor coupling

Slessareva, Janna Eugenievna. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vi, 200 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
44

Molecular mechanisms of G protein-receptor coupling

Ma, Hongzheng. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 264 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
45

Chemical Transformations Encoded by a Streptomyces coelicolor Gene Cluster with an Unusual GTP Cyclohydrolase

Spoonamore, James Edward January 2008 (has links)
Bacterial secondary metabolite biosynthetic pathways are frequently encoded in gene clusters. Genomic sequence information allows the identification of likely biosynthetic clusters based on sequence homology to known proteins. Biochemical characterization of suspected biosynthetic enzymes affords the discovery of pathways which may never be identified by traditional screening approaches. In the work presented here, I, in some cases in collaboration with others, characterize the three intragenomic GTP cyclohydrolase II (GCH II) homologs from Streptomyces coelicolor A3(2) and show that one catalyzes a related but distinct reaction from the other two. The basis for the altered activity is investigated and speaks to the chemical mechanism of not only the unusual enzyme but also to all GCH II enzymes. Further, I investigate two other enzymes found in the same gene cluster as the unusual GCH II. Using biochemical techniques, I show that the product of the unusual GCH II is used as a substrate by a creatinine amidohydrolase homolog. Using structural biology, I show that the third enzyme, a 6-pyruvoyltetrahydropterin synthase (PTPS), can not catalyze the PTPS reaction but is capable of binding a pterin substrate. Finally, I propose that the cluster from S. coelicolor containing the unusual GCH II encodes enzymes for a novel pathway to produce a pterin.
46

Assembly and function of multimeric adenylyl cyclase signalling complexes

Baragli, Alessandra. January 2007 (has links)
G protein coupled receptors, G proteins and their downstream effectors adenylyl cyclase (ACs) were thought to transiently interact at the plasma membrane by random collisions following agonist stimulation. However a growing number of studies have suggested that a major revision of this paradigm was necessary to account for signal transduction specificity and efficiency. The revised model suggests that signalling proteins are pre-assembled as stable macromolecular complexes together with modulators of their activity prior to receptor activation. How and where these signalling complexes form and the mechanisms governing their assembly and maintenance are not completely understood yet. Initially, we addressed this question by exploring AC2 interaction with beta2-adrenergic receptors (beta2ARs) and heterotrimeric G proteins as parts of a pre-assembled signalling complex. Using a combination of biophysical and biochemical techniques, we showed that AC2 interacts with them before it is trafficked to the cell surface in transfected HEK-293 cells. These interactions are constitutive and do not require stimulation by receptor agonists. Furthermore, the use of dominant-negative Rab/Sar monomeric GTPases and dominant-negative heterotrimeric G protein subunits proved that AC2/beta2AR and AC2/Gbetagamma interactions occurred in the ER as measured using both BRET and co-immunoprecipitation experiments, while interaction of the Galpha subunits with the above complexes occurred at a slightly later stage. Both Galpha and Gbetagamma played a role in stabilizing these complexes. Our data also demonstrated that stimulation of AC was still possible when the complex remained on the inside of the cell but was reduced when the GalphaS/AC2 interaction was blocked, suggesting that the addition of the GalphaS subunit was required to render the nascent complexes functional prior to trafficking to proper sites of action. Next, we tackled the issue of higher order assembly of effectors and G proteins, using two different AC isoforms and GalphaS as a model. We demonstrated that AC2 can form heterodimers with AC5 through direct molecular interaction in unstimulated HEK-293 cells. AC2/5 heterodimerization resulted in a reduced total level of AC2 expression, which affected cellular accumulation of cAMP upon forskolin stimulation. The AC2/5 complex was stable in presence of receptor or forskolin stimulation. We provided evidence that co-expression with GalphaS increased the affinity of AC2 for AC5 as monitored by BRET. In particular, the complex formed by AC2/5 lead to synergistic accumulation of cAMP in presence of GalphaS and forskolin, with respect to either of the parent AC isoforms themselves. Finally, we also showed that this complex can be detected in native tissues, as AC2 and AC5 could be co-immunoprecipiated from lysates of mouse heart. Taken together, we provided evidence for stable formation of signalling complexes involving receptor/G proteins/adenylyl cyclase or G proteins/heterodimeric adenylyl cyclases and that G proteins play a crucial role for their assembly and function.
47

GTP-Cyclohydrolase function in parasitic nematode development

Baker, Rachael Helen January 2012 (has links)
Parasitic nematodes of grazing livestock represent an increasing economic and welfare problem for British agriculture. By investigating specific life-cycle stages of these parasites, it may be possible to identify key molecules or pathways that are required for the survival of the worms, and thus exploit these for future control strategies. It has been shown previously that the third larval stages (L3) of the ovine parasitic nematode Teladorsagia circumcincta produce high levels of transcript for the enzyme GTP-Cyclohydrolase relative to later developmental stages. As the ratelimiting factor in the production of tetrahydrobiopterin, GTP-Cyclohydrolase is required for a number of different biochemical pathways, including those involved in the production of serotonin and melanin. As the L3 do not feed, it can be hypothesised that, if finite resources are being used in the production of transcript encoding this enzyme, then it may be important for survival. In this thesis, a number of approaches were taken to explore the function of GTPCyclohydrolase in the life-cycle development of T. circumcincta. The closely related parasite, Dictyocaulus viviparus, was used as a model organism to explore the role of GTP-Cyclohydrolase and serotonin production with regards to larval arrest, or hypobiosis. This process occurs readily under experimental conditions in D. viviparus, which is not possible with T. circumcincta. Quantitative PCR was used to examine GTP-Cyclohydrolase transcript levels in two different strains of D. viviparus, one that enters larval arrest when exposed to cold conditions and one that does not. No differences were observed between the two strains suggesting that GTP-Cyclohydrolase was unlikely to be involved in hypobiosis. The model nematode, Caenorhabditis elegans, was used to perform functional complementation experiments to assess the role of GTP-Cyclohydrolase in the cuticle, as it has been shown previously that C. elegans GTP-Cyclohydrolase mutants have a ‘leaky cuticle’ and are killed by lower doses of anthelmintics and bleach than the wild-type worms. The T. circumcincta gene for GTP-Cyclohydrolase was able to restore cuticular integrity of C. elegans GTP-Cyclohydrolase-deletion mutants, suggesting that the role played by the protein in both species is similar. In vitro inhibition experiments using a chemical inhibitor of GTP-Cyclohydrolase showed that T. circumcincta larval development was disrupted in the presence of the inhibitor. It was also shown that T. circumcincta L3 that were exposed to sunlight produced melanin, suggesting that the levels of GTP-Cyclohydrolase observed in the preparasitic stages of T. circumcincta may be required for the synthesis of melanin. Together, these data suggest that GTP-Cyclohydrolase is required by the preparasitic stages to survive on pasture. Ultraviolet radiation has been shown previously to be harmful to T. circumcincta L3, so if the melanin production provides protection from this, then it would be crucial for the survival of the pre-parasitic stages.
48

Síntesis y propiedades de copolímeros en bloque constituidos por bloques hidrofílico-hidrofóbico

Coustet, Marcos Eduardo 21 April 2014 (has links)
El presente trabajo de tesis se enfoca en la síntesis de nuevos copolímeros en bloque caracterizados por poseer un bloque hidrofóbico y otro hidrofílico. Se ha seleccionado el metacrilato de bencilo para la construcción del bloque hidrofóbico y ácido metacrílico (por posterior hidrólisis del metacrilato de tert-butilo) o metacrilato de N, N´dimetilaminoetilo para la obtención del bloque hidrofílico. La metodología de síntesis seleccionada es un método de polimerización aniónica que requiere condiciones menos drásticas que la polimerización aniónica convencional, basada en iniciadores organometálicos. Este método de polimerización se denomina “polimerización por transferencia de grupo” (o GTP, Group Transfer Polymerization, por sus siglas en inglés) y se realiza a temperatura ambiente empleando un iniciador sililcetenacetal conjuntamente con un catalizador nucleofílico (bisbenzoato de tetrabutilamonio). Los copolímeros mencionados han sido estudiados en combinación con otros materiales a fin de analizar sus propiedades de autoensamblado en solución (fase directa o inversa) ó aplicando la metodología “capa por capa” (o L-b-L, layer-by-layer) sobre partículas de sílica y sobre superficies planas. Se utilizaron numerosas técnicas para la caracterización y estudio de los productos obtenidos, tales como dispersión de luz dinámica (DLS), espectroscopia UV-Visible, potencial zeta, microbalanza de cristal de cuarzo, microscopías de láser confocal, de fuerza atómica, electrónica de barrido y de transmisión electrónica, entre otras.
49

Cellular role for Developmentally Regulated G-proteins in plants: Heat stress and protein renaturation.

Anthony O'Connell Unknown Date (has links)
Developmentally regulated G-proteins (DRGs) are a highly conserved family of GTP binding proteins found in archaea, plants, fungi and animals. Their function is poorly understood but they are implicated in cell division, proliferation, and growth, as well as several human medical conditions. The research reported here has utilised a variety of approaches including structural biology, biochemistry, expression profiling, and mutant analysis in order to investigate the cellular function of DRG proteins in plants. Recombinant, biologically active atDRG1 and atDRG2 protein from Arabidopsis thaliana was purified using in vitro refolding and was used in both structural studies and biochemical analysis. Crystallographic studies were carried out for both atDRG1 and atDRG2 across 3840 unique, independent crystallisation conditions for each protein. Heterogeneous nucleation was also used in a separate crystallography screen in order to induce nucleation and subsequent crystal growth however no diffraction quality protein crystal were produced in this study. The nucleotide binding and hydrolysis properties of recombinant atDRG1 and atDRG2 were measured in vitro, representing the first biochemical characterisation of DRG proteins. Both atDRG1 and atDRG2 were found to bind GDP and GTP in vitro without the assistance of exogenous exchange or activation factors. The Kcat for GTP hydrolysis by atDRG1 and atDRG2 was found to be 7.44 x 10-4 min-1 and 1.18 x 10-3 min-1 respectively which is consistent with proteins related to the DRG subfamily. An Arabidopsis thaliana atDRG2a knockout mutant was identified and characterised in this study as well representing the first DRG knockout mutant in a multicellular organism. We found that complete knockout of atDRG2a is not lethal in Arabidopsis and that the nearly identical atDRG2b protein is not upregulated in response to an absence of atDRG2a in the cell. The mutant did not display an obvious phenotype compared to wild-type. The expression profiles of the three Arabidopsis thaliana drg genes, drg1, drg2a, and drg2b, were characterised using drg promoter:GUS Arabidopsis transgenics and revealed several interesting features. Under normal conditions, drg1 and drg2a transcripts are present in all cells whilst drg2b transcripts are undetectable. When heat stress is applied, drg2b and drg1 are specifically up regulated and drg2a is not. During seed imbibition, drg2a and drg1 are specifically upregulated whilst drg2b is not. The expression pattern of the drg family closely mirrors that of chaperone/heat shock proteins and this would agree with previous research that suggests that DRG2a may perform a chaperone role. The ability of DRGs to bind nucleotides without assistance, their slow rate of GTP hydrolysis, heat stress activation, abundance in seeds, cytosolic localization, and domain conservation, all agree with the models proposed for spoOB associated G-protein (Obg) function, whereby Obgs stabilise or refold ribosomes or other proteins in response to stress. It is possible that DRGs perform a similar and complementary function to Obgs, specifically during heat stress, despite the low level of sequence conservation between Obgs and DRGs.
50

G-proteins and adenylyl cyclase in Alzheimer's disease postmortem brain /

García-Jiménez, Angela, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2002. / Härtill 5 uppsatser.

Page generated in 0.0258 seconds