• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 34
  • 34
  • 34
  • 15
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mutations of the Alpha-Subunit of G-Proteins: A Thesis

Woon, Chee-Wai 01 September 1988 (has links)
Signal transduction by G-proteins (a heterotrimer membrane protein composed of an α, β, and γ subunit) requires that the α-subunit undergoes a transition from a GDP-bound inactive state to an activated GTP-bound state. The exchange of GDP for GTP leads to a conformational change in the α-subunit that results in the loss of affinity for the βγ subunits. We predicted that appropriate genetic manipulation of key regions of the α-subunit could result in the induction of the active conformation that would mimic at least in part the activated GTP-bound state. We have demonstrated that the substitution of the 38 amino acid residue carboxyl termimus of Gαs with the last 36 amino acid residues of Gαi2 resulted in a chimeric Gα-subunit (C4) that exhibits a constitutively active Gαs-like activity. Similarly, the substitution of the amino terminal 61 amino acid residues of Gαs with the first 54 residues of Gαi2 also resulted in a chimeric Gα-subunit that is persistently active (Gs like). We have also generated point mutations in the Gαs subunit that are comparable to the activating mutations in the ras protein. Our results suggest that point mutations in the signature sequence of the A (Val 49) and C (Thr 225) homologous regions that are implicated in regulating the GTPase activity of the molecule also resulted in the activation of the subunit. The present study has identified four key regions of the α-subunit that are critical for the activity and regulation of the Gs protein.
22

The role of Rac1 in mouse podocyte cellular process formation and differentiation /

Attias, Ortal January 2008 (has links)
No description available.
23

CHARACTERIZING THE GROWTH ARREST SPECIFIC GENE, GEM1, IN CHICKEN EMBRYO FIBROBLASTS

Patel, Preyansh January 2023 (has links)
Conditions that lead to reversible growth arrest (quiescence), promote the expression of a set of genes called growth arrest specific (GAS) genes. GAS genes play a crucial role in initiating and maintaining the entry into quiescence, while also activating stress responses to help the cell overcome the effects of the stressors. Gene profiling study examining the transcriptome has shown a vast number of genes that are upregulated during quiescence, among them is GEM1 (GTP binding protein overexpressed in skeletal muscle). GEM1 transcripts were elevated 18-fold in response to quiescence. GEM1 is a small monomeric GTPase from the Ras superfamily. It is involved in regulation of cytoskeleton reorganization, and inhibition of voltage gated calcium channels that ultimately prevents hormone secretion. A preliminary study determined that GEM1 is packaged into extracellular vesicles (EV). GEM1 is also reported to promote lipid accumulation and adipogenesis in goat pre-adipocytes. GEM1 is also reported to bind transcription factors that are involved in lipid homeostasis pathways. Thus, it is probable that GEM1 may play a major role in EV formation and/or release, and lipid homeostasis. This study examined the expression of GEM1 at the protein level and validates its candidacy as a GAS gene. We also created two GEM1-shRNA retroviral constructs capable of partially downregulating GEM1 expression which can serve as a molecular tool for further characterizing the function of GEM1 in quiescent CEF. / Thesis / Bachelor of Science (BSc) / GEM1 is a small monomeric GTPase, implicated in a variety of roles in eukaryotes. It plays a role in regulating adipogenesis, and hormone secretion. Most notably it regulates cytoskeleton reorganization in response to changes in calcium concentrations. Gene profiling done by Bédard Lab identified that GEM1 transcripts were highly elevated in reversible growth arrested chicken embryo fibroblasts (CEF). In this study we further explore and characterize the protein expression of GEM1 in quiescent CEF. We also design and test shRNAi retroviral constructs to downregulate GEM1 in quiescent CEF.
24

The role of RhoA interacting proteins in the Nogo signalling pathway of axon outgrowth inhibition /

Alabed, Yazan Z., 1979- January 2009 (has links)
Regrowth in the lesioned central nervous system is impeded by inhibitory molecules including myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs). Inhibitory molecules engage neuronal cell surface receptors and activate the small GTPase RhoA in injured neurons to mediate neurite outgrowth inhibition through targeted modifications to the cytoskeleton. Inhibition of RhoA with the ribosyltransferase C3 attenuates neurite outgrowth inhibition in vitro and in vivo but the ubiquitous expression and multifunctionality of RhoA may limit the specificity of therapeutic RhoA antagonists. The hypothesis of the thesis is that molecules that functionally interact with RhoA to mediate myelin-dependent inhibition may represent more specific targets for therapeutic intervention. We have explored the contribution of two RhoA interacting proteins to the neurite outgrowth inhibitory effects of MAIs. In Chapter 2 we describe the contribution of the rho effector, Rho kinase (ROCK) to MAI responses in neurons. In Chapter 3 we identify the cytosolic phosphoprotein CRMP4b (Collapsin Response Mediator Protein 4b) as a novel RhoA binding partner that mediates neuronal responses to CNS inhibitors. By structure function analysis we have developed a molecular antagonist of CRMP4b-RhoA binding that promotes neurite outgrowth on inhibitory substrates in vitro and has the potential to be a potent and specific molecular therapeutic for spinal cord injury. In Chapter 4 we identify glycogen sythase kinase 3b (GSK3b) as an important kinase in the MAI pathway that regulates protein interactions with RhoA. This thesis provides insights into the signal transduction machinery that is engaged in response to CNS inhibitors and suggests several novel therapeutic targets to promote axon regeneration following CNS injury.
25

Structural and Mutational Analysis of Rab2A Activation by Mss4: A Dissertation

Zhu, Zhongyuan 01 November 2000 (has links)
The function of GTP-binding proteins (G-proteins) in diverse intracellular pathways depends on their ability to switch between two forms, a GDP-bound (inactive) form and a GTP bound (active) form in a highly regulated GTPase cycle. The inactivation step of this cycle is regulated by GTPase-activating proteins (GAPs) which increase the intrinsic rate of hydrolysis of bound GTP; the activation step is regulated by a diverse family of GDP/GTP exchange factors (GEFs). A unique model system, which consists of the 13 kDa GEF Mss4 and the monomeric G protein Rab3A involved in presynaptic neurotransmission, was chosen to study the mechanism of G-protein regulation. Structure of Rab3A at high resolution The 2.0 Å crystal structure of Rab3A, bound to a non-hydrolyzable GTP-analog (GppNHp), enables a detailed description of the structural determinants that stabilize the active conformation and regulate GTPase activity within the Rab family. Although the overall structure is similar to that of GppNHp-bound Ras and other GTPases, localized but significant differences are observed in the vicinity of the conformational switch regions and the α3/β5 loop. The active conformation is stabilized primarily by extensive hydrophobic contacts between the switch I and II regions. Novel interactions with the γ phosphate, mediated by serine residues in the P-loop and switch I region, impose stereochemical constraints on the mechanism of GTP hydrolysis and provide a structural explanation for the broad range of GTPase activities within the Rab family. Residues implicated in interactions with effectors and regulatory factors map to a common face of the protein. The asymmetric distribution of charged and non-polar residues suggests a plausible orientation with respect to vesicle membranes that would position predominantly hydrophobic surfaces to interact with membrane-associated effectors and regulatory factors. Thus, the structure of Rab3A establishes a framework for understanding the molecular mechanisms underlying the function of Rab proteins in vesicle trafficking. High resolution structure of Mss4 and structure-based mutagenesis Activation of monomeric Rab GTPases, which function as ubiquitous regulators of intracellular membrane trafficking, requires the catalytic action of guanine nucleotide exchange factors. Mss4, an evolutionarily conserved Rab exchange factor, promotes nucleotide release from exocytic but not endocytic Rab GTPases. Chapter III describes the results of a high resolution crystallographic and mutational analysis of Mss4. The 1.65 Å crystal structure of Mss4 reveals a network of direct and water mediated interactions that stabilize a partially exposed structural sub-domain derived from four highly conserved but non-consecutive sequence elements. The conserved sub-domain contains the invariant cysteine residues required for Zn2+ binding as well as the residues implicated in the interaction with Rab GTPases. A strictly conserved DΦΦ motif, consisting of an invariant aspartic acid residue (Asp73) followed by two bulky hydrophobic residues (Met74 and Phe75), encodes a prominently exposed 310 helical turn in which the backbone is well ordered but the side chains of the conserved residues are highly exposed and do not engage in intramolecular interactions. Substitution of any of these residues with alariine dramatically impairs exchange activity towards Rab3A, indicating that the DΦΦ motif is a critical element of the exchange machinery. In particular, mutation of Phe75 results in a defect as severe as that observed for mutation of Asp96, which is located near the zinc binding site at the opposite end of Rab interaction epitope. Despite severe defects, however, none of the mutant proteins is catalytically dead. Taken together, the results suggest a concerted mechanism in which distal elements of the conserved Rab interaction epitope cooperatively facilitate GDP release. The basis for selective recognition of exocytic Rab family GTPases by Mss4 Rab3A is involved in Ca2+ -dependent exocytosis and neurotransmitter release. Mss4, an evolutionarily conserved Rab exchange factor, promotes nucleotide release from exocytic RabGTPase (Rab1, Rab3A, Rab8, and Rab10, Sec4 and Ypt1) but not endocytic Rab GTPases (Rab2, Rab4, Rab5, Rab6, Rab9 and Rab11). To understand the basis for selective recognition of exocytic Rab family GTPases by Mss4, a structure based mutagenesis study of Rab3A was conducted. Three residues in Rab3A (Phe51, Val61 and Thr89) were found to be critical for interaction with Mss4. Phe51 is located at the N- terminus of the switch region, adjacent to the Mg2+ and nucleotide binding site. Val61 in the β2 strand and Thr89 in the switch II region flank a triad of hydrophobic residues that is conserved in the Rab family. These residues comprise critical determinants underlying the broad specificity of Mss4 for exocytic Rab family proteins. In addition to determining the high resolution crystal structures of Rab3A and Mss4, the experiments described above identify critical structural determinants for the exchange activity of Mss4 and provide insight into the selective recognition of Mss4 by exocytic Rab GTPases.
26

The role of RhoA interacting proteins in the Nogo signalling pathway of axon outgrowth inhibition /

Alabed, Yazan Z. January 2009 (has links)
No description available.
27

Padronização das técnicas de PNA e PCR em tempo real para detecção das mutações ativadoras no GNAS na síndrome de McCune-Albright / Standardization of the PNA and real time techniques for the detection of activating mutations in the GNAS in McCune-Albright syndrome

Mariani, Beatriz Marinho de Paula 05 October 2012 (has links)
A síndrome de McCune Albrigth (SMA) é uma doença genética não hereditária, com incidência estimada entre 1/100.000 e 1/1.000.000 casos/ano. A SMA caracteriza-se clinicamente pela tríade: displasia óssea fibrosa (FD), manchas cutâneas café-com-leite e hiperfunção endócrina tais como: síndrome de Cushing, pseudo-puberdade precoce, hipertiroidismo, acromegalia. O diagnóstico da SMA clássica é usualmente baseado no quadro clínico associado a dosagens hormonais e exames de imagem, principalmente cintilografia do esqueleto. No entanto, quadros atípicos e formas parciais muitas vezes dificultam o diagnóstico preciso da síndrome. O objetivo deste estudo foi padronizar dentre as técnicas de PNA (peptide nucleic acid) e PCT em Tempo Real, para a detecção de polimorfismos de base única (SNPs), a técnica mais sensível para a discriminação das mutações ativadoras da subunidade da proteína G. Para este estudo foram selecionados 32 pacientes, 1 masculino e 31 femininos, com SMA, todos em seguimento no Hospital das Clínicas da Faculdade de Medicina da USP. Como resultado positivo, apresentamos nesse trabalho pela primeira vez o uso do RT-PCR genotipagem na detecção das mutações ativadoras da proteína G, em DNA extraído de tecidos afetados e em leucócitos de sangue periférico, sendo a técnica considerada sensível o suficiente para discriminar de forma simples e rápida as mutações ativadoras da PGs. Sugerimos nesse estudo o uso da técnica de discriminação alélica pelo sistema Taqman. Essa técnica possibilita a detecção destas mutações gsp no sangue periférico mesmo numa baixa porcentagem, uma vez que nem sempre o tecido afetado (gônada, osso, hipófise) é disponível. / The McCune-Albright Syndrome (MAS) is a genetic disease, with incidence estimated at 1/100.000 and 1/1000000 cases per year. MAS is clinically characterized by the triad: bone fibrous dysplasia (FD) café-au-lait skin spots and endocrine hyperfunction, such as: precocious puberty (PP), Cushing's syndrome, hyperthyroidism and acromegaly. The diagnosis of MAS is originally based on clinical characteristics associated with hormonal and imaging studies. However, atypical and partial forms often hamper the accurate diagnosis of the syndrome. For this study we selected 32 patients, 1male and 31 females, all being treated in Hospital das Clínicas, School of Medicine, University of São Paulo. As a positive result, we showed for the first time the use of Real Time PCR/genotyping for the detection of activating mutations of the stimulatory G protein, using blood leucocytes DNA. This technique was sensible and can bring fast results for the patient and the physician, making the diagnosis easier. Our study proposes the use of allelic discrimination by Taqman system, which can be used as a probe that allows the identification of specific genotypes. These techniques could help detect these mutations in peripheral blood when the affected tissue is not available.
28

Gene Expression patterns in High-Altitude Pulmonary Edema: A Gene Microway Analysis

Krause, Lauren Kendall 25 March 2008 (has links)
Multiple modulating genes and environmental factors have been implicated in the pathogenesis of high-altitude pulmonary edema (HAPE). However, at the present time, there exists an incomplete understanding of the molecular mechanisms and pathways which underlie constitutional susceptibility. Genome-wide measurements of gene expression in peripheral blood mononuclear cells (PBMCs) were performed using microarray technology. Comparison of gene expression profiles of HAPE-susceptible and resistant individuals resulted in the identification of several previously undescribed candidate genes. RhoA and Rho-kinase (ROCK), regulators of vascular smooth muscle contraction, were differentially regulated in the HAPE-susceptible cohort, as compared to both HAPE-resistant patients with acute mountain sickness (AMS+) and healthy controls (p=0.0014; p=0.0020). Furthermore, biological pathways involving RhoA and Rho-kinase were strongly upregulated in subjects with HAPE. These findings represent the first description of the RhoA/Rho-kinase signaling pathway in HAPE. Currently, few pharmacologic therapies have been demonstrated to be effective in the prevention and treatment of HAPE. The results of this study provide early evidence that Fasudil, a selective Rho-kinase inhibitor, may represent a novel therapeutic intervention effective in the prevention and/or treatment of high-altitude pulmonary edema.
29

Genetic analysis of grinder formation in Caenorhabditis elegans: regulation by RAB-6.2 and its GTPase activating protein EAT-17

Anselmo, Sarah Straud. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 106-117.
30

Roles and regulation of Saccharomyces cerevisiae Rho-type GTPases Rho5p and Cdc42p

Annan, Robert, January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Biochemistry. Title from title page of PDF (viewed ). Includes bibliographical references.

Page generated in 0.0699 seconds