• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intégration hétérogène de GaAs sur Si à partir de nano-germes : étude de la nucléation et de la croissance de micro-cristaux sur substrats Si (001) et (111) / Heterogeneous Integration of GaAs on Si from Nano-seeds : Study of Nucleation and Micro-crystals Growth on (001) and (111) Si Substrates

Coste, Marie 20 December 2018 (has links)
L’intégration du GaAs sur Si est un des défis majeurs des 40 dernières années puisqu’elle permettrait de combiner les nombreux avantages du Si, dont notamment son bas coût, avec les propriétés de haute mobilité et de gap direct du GaAs. Les cellules photovoltaïques multi-jonctions à base de matériau III-V permettent d’obtenir les plus hauts rendements de conversion photovoltaïque. Cependant, leur coût de fabrication élevé est un aspect limitatif de leur utilisation. Nous nous sommes intéressés ici à une étude préliminaire visant à réaliser leur intégration sur substrat Si. In fine, l’objectif sera la réalisation de cellules tandems GaAs/Si et GaAs/Ge sur substrat Si. L’intégration du GaAs et du Ge sur Si conduit cependant à la formation de dislocations et de fissures du fait de leurs désaccords de maille et de leurs différences de coefficient d’expansion thermique respectifs. De plus, du fait de la différence de polarité entre le GaAs et le Si, cette intégration conduit également à la formation de domaine d’anti-phase. Nous présentons dans cette étude un procédé d’intégration permettant à la fois l’élimination de ces défauts et le passage du courant entre le matériau épitaxié et le Si. Ce procédé est basé sur l’utilisation d’ouvertures de tailles nanométriques dans une silice fine, qui nous permet ainsi de réaliser la croissance du GaAs sur Si sous forme de cristaux, par épitaxie latérale à partir de nano-germes de GaAs ou de Ge. Pour ce faire, nous utilisons l’épitaxie par jet chimique sans gaz vecteur qui est une technique de croissance permettant une bonne sélectivité. La croissance sera tout d’abord étudiée dans des ouvertures aléatoires, facilement réalisées in-situ sous ultravide, puis dans des ouvertures localisées de tailles fixées. Ces dernières sont obtenues suite à une procédure longue et complexe qui repose sur des étapes de nettoyage chimique, d’enrésinement, de lithographie électronique, de développement et de gravure ionique réactive. Nous présenterons les résultats de la croissance directe de cristaux de GaAs dans les ouvertures sur Si (001) et Si (111), et également à partir de nano-germes de Ge. Ce procédé d’intégration a permis l’élimination des trois types de défauts précédemment indiqués, et nous avons obtenu de très bons résultats notamment lors de l’intégration dans les ouvertures localisées sur Si (111). Nous verrons que la morphologie des nano-germes de Ge peut toutefois être problématique lors de la reprise d’épitaxie du GaAs. La possibilité de passage du courant par effet tunnel à travers la silice fine sera ensuite vérifiée et le dopage des cristaux de GaAs avec du Si sera également présenté. / GaAs on Si integration is one of the major challenges of the last 40 years as it would allow to combine Si advantages, like its low cost, with GaAs high mobility and direct bandgap. Multi-junction photovoltaic cells based on III-V materials have the highest photovoltaic conversion efficiencies. However, their high manufacturing cost is a limiting aspect of their use. This is why we have made a preliminary study aiming at realizing their integration on Si substrate. In fine, the objective will be the realization of tandem solar cells made of GaAs/Si and GaAs/Ge on Si substrate. However, GaAs and Ge integrations on Si lead to dislocations and cracks formations because of their respective differences of lattices parameters and thermal expansion coefficients. Moreover, because of the difference of polarity between GaAs and Si, this integration also leads to anti-phase domain formation. We present in this study an integration process allowing both these defects elimination and current passage between the epitaxial material and Si. This process is based on the use of nanoscale openings in a thin silica, which allows us to carry out GaAs crystals growth on Si by lateral epitaxy from GaAs or Ge nano-seeds. To do this, we use chemical beam epitaxy which is a growth technique allowing good selectivity. Firstly, the growth will be studied inside randomly dispersed openings, which are easily made in situ under ultra-high vacuum, and then inside localized openings with fixed sizes. These are obtained after a long and complex procedure including chemical cleaning, resist spin-coating, electronic lithography, development and reactive ion etching. We will present GaAs crystals direct growth inside openings on Si (001) and (111), and also from Ge nano-seeds. This integration process allowed the elimination of the three types of defects previously mentioned, and we have obtained very good results especially for the integration inside localized openings on Si (111). We will see that Ge nano-seeds morphology can however be problematic during the GaAs lateral epitaxy. In addition, the current passage by tunnel effect through the thin silica will be verified and the GaAs crystals doping with Si will also be presented.
2

Heterogeneous Integration of III-V Multijunction Solar Cells on Si Substrate: Cell Design and Modeling, Epitaxial Growth and Fabrication

Jain, Nikhil 07 May 2015 (has links)
Achieving high efficiency solar cells and concurrently driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III-V compound semiconductor based solar cells have steadily shown performance improvement at approximately 1% (absolute) increase per year, with a recent record efficiency of 46%. However, the expensive cost has made it challenging for the high efficiency III-V solar cells to compete with the mainstream Si technology. Novel approaches to lower down the cost per watt for III-V solar cells will position them to be among the key contenders in the renewable energy sector. Integration of such high-efficiency III-V multijunction solar cells on significantly cheaper and large area Si substrate has the potential to address the future LCOE roadmaps by unifying the high-efficiency merits of III-V materials with low-cost and abundance of Si. However, the 4% lattice mismatch, thermal mismatch polar-on-nonpolar epitaxy makes the direct growth of GaAs on Si challenging, rendering the metamorphic cell sensitive to dislocations. The focus of this dissertation is to systematically investigate heterogeneously integrated III-V multijunction solar cells on Si substrate. Utilizing a combination of comprehensive solar cell modeling and experimental techniques, we seek to better understand the material properties and correlate them to improve the device performance, with simulation providing a very valuable feedback loop. Key technical design considerations and optimal performance projections are discussed for integrating metamorphic III-V multijunction solar cells on Si substrates for 1-sun and concentrated photovoltaics. Key factors limiting the “GaAs-on-Si” cell performance are identified, and novel approaches focused on minimizing threading dislocation density are discussed. Finally, we discuss a novel epitaxial growth path utilizing high-quality and thin epitaxial Ge layers directly grown on Si substrate to create virtual “Ge-on-Si” substrate for III-V-on-Si multijunction photovoltaics. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III-V solar cell efficiencies, the future prospects for successful integration of III-V solar cell technology with Si substrate looks very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics. / Ph. D.
3

Temperaturbestimmung an IGBTs und Dioden unter hohen Stoßstrombelastungen

Simon, Tom 16 April 2015 (has links)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.:Aufgabenstellung Inhaltsverzeichnis Nomenklatur Einleitung 1. Grundlagen 1.1. Halbleitermaterialien 1.2. Dioden Grundlagen 1.2.1. pn-Übergang 1.2.2. Temperaturabhängigkeit der Diffusionsspannung des pn-Übergangs 1.2.3. Diodenstrukturen 1.3. IGBT Grundlagen 1.3.1. Funktionsweise und ESB 1.3.2. Statisches Verhalten des IGBTs 1.4. Messtechnische Bestimmung der virtuellen Sperrschichttemperatur 1.4.1. VCE(T)- und VGth(T)-Methode 1.4.2. Temperaturreferenzmessung – Kalibrierkennlinie 1.4.3. Wurzel(t)-Methode 1.5. Simulation der virtuellen Sperrschichttemperatur mittels thermischer Ersatzschaltbilder 1.5.1. Thermische Kenngrößen Rth, Cth 1.5.2. Transiente thermische Impedanz Zth 1.5.3. Ersatzschaltbild – Cauer-Netzwerk 1.6. Simulation der virtuellen Sperrschichttemperatur mittels Halbleitersimulator 1.7. Stoßstromereignisse 2. Vormessungen 2.1. Prüflinge 2.2. Messung der Sperrfähigkeit 2.2.1. Testaufbau – Schaltung 2.2.2. Testergebnisse 2.3. Messung des Ausgangskennlinienfeldes/ Durchlassmessungen 2.3.1. Testaufbau – Schaltung 2.3.2. Testergebnisse 2.4. Messung der Transferkennlinie 2.4.1. Testaufbau – Schaltung 2.4.2. Testergebnisse 2.4.3. Bestimmung des “pinch-off”-Bereiches 2.5. Aufnahme der Kalibrierkennlinien 2.5.1. Testaufbau – Schaltung 2.5.2. Testergebnisse 3. Temperaturbestimmung mittels thermischer Impedanz Zth 3.1. Testaufbau – Schaltung 3.2. Testergebnisse 4. Temperaturbestimmung am Stoßstrommessplatz 4.1. Ermittlung der Halbleitertemperatur nach einem Stoßstromereignis 4.1.1. Anpassung des Stoßstrommessplatzes 4.1.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.1.3. Testergebnisse 4.2. Ermittlung des Halbleitertemperaturverlaufes während des Stoßstromereignisses 4.2.1. Testaufbau - Schaltung 4.2.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.2.3. Testergebnisse 5. Simulation der Temperaturverläufe 5.1. Temperatursimulation mittels Halbleitersimulator 5.2. Temperatursimulation mittels Cauer-Netzwerk 5.3. Angepasste Temperatursimulation mittels Cauer-Netzwerk 6. Zusammenfassung und Ausblick Anhang Literaturverzeichnis Selbstständigkeitserklärung Danksagung

Page generated in 0.0527 seconds