• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 40
  • 37
  • 11
  • 10
  • 7
  • 5
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 319
  • 74
  • 61
  • 57
  • 53
  • 43
  • 35
  • 33
  • 29
  • 27
  • 26
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Prototype and Testing of a MEMS Microcooler Based on Magnetocaloric Effect

Ghirlanda, Simone L. 24 March 2006 (has links)
This thesis documents the work and research effort on the design, fabrication and testing of a magnetocaloric MEMS microcooler, focusing on the testing of the microcooler at low magnetic fields. The phenomenon of magnetocaloric effect (MCE), or adiabatic temperature change, which is obtained by heating or cooling magnetic materials due to a varying magnetic field, can be exploited in the area of magnetic refrigeration as a reliable, energy-efficient cooling system. In particular, its applications are being explored primarily in cryogenic technologies as a viable process for the liquefaction of hydrogen. The challenge for magnetic refrigeration is that the necessary MCE is most easily achieved with high magnetic fields (5-6 Tesla) provided by superconducting magnets. However, a significant magnetocaloric effect can be exhibited at lower magnetic fields (1-2 Tesla) by carefully controlling initial temperature conditions as well as by selecting, preparing and synthesizing the optimal fabrication process of Silicon (Si) wafers. A microcooler was integrated based on previous works of others and tested. Finally, testing of the magnetocaloric effect was conducted and results analyzed. Experimental results in these domains demonstrate that magnetic refrigeration can be part of the best current cooling technology, without having to use volatile, environmentally hazardous fluids. The MEMS magnetocaloric refrigerator demonstrated a ~ -12°C change in the temperature of cooling fluid at a magnetic field of 1.2 T.
142

Analysis of mass transfer by jet impingement and study of heat transfer in a trapezoidal microchannel

Ojada, Ejiro Stephen 01 June 2009 (has links)
This thesis numerically studied mass transfer during fully confined liquid jet impingement on a rotating target disk of finite thickness and radius. The study involved laminar flow with jet Reynolds numbers from 650 to 1500. The nozzle to plate distance ratio was in the range of 0.5 to 2.0, the Schmidt number ranged from 1720 to 2513, and rotational speed was up to 325 rpm. In addition, the jet impingement to a stationary disk was also simulated for the purpose of comparison. The electrochemical fluid used was an electrolyte containing 0.005moles per liter potassium ferricyanide (K3(Fe(CN6)), 0.02moles per liter ferrocyanide (FeCN6?4), and 0.5moles per liter potassium carbonate (K2CO3). The rate of mass transfer of this electrolyte was compared to Sodium Hydroxide (NaOH) and Hydrochloric acid (HCl) electrochemical solutions. The material of the rotating disk was made of 99.98% nickel and 0.02% of chromium, cobalt and aluminum. The rate of mass transfer was also examined for different geometrical shapes of conical, convex, and concave confinement plates over a spinning disk. The results obtained are found to be in agreement with previous experimental and numerical studies. The study of heat transfer involved a microchannel for a composite channel of trapezoidal cross-section fabricated by etching a silicon wafer and bonding it with a slab of gadolinium. Gadolinium is a magnetic material that exhibits high temperature rise during adiabatic magnetization around its transition temperature of 295K. Heat was generated in the substrate by the application of magnetic field. Water, ammonia, and FC-77 were studied as the possible working fluids. Thorough investigation for velocity and temperature distribution was performed by varying channel aspect ratio, Reynolds number, and the magnetic field. The thickness of gadolinium slab, spacing between channels in the heat exchanger, and fluid flow rate were varied. To check the validity of simulation, the results were compared with existing results for single material channels. Results showed that Nusselt number is larger near the inlet and decreases downstream. Also, an increase in Reynolds number increases the total Nusselt number of the system.
143

Atomic Diffusion in the Uranium-50wt% Zirconium Nuclear Fuel System

Eichel, Daniel 16 December 2013 (has links)
Atomic diffusion phenomena were examined in a metal-alloy nuclear fuel system composed of δ-phase U-50wt%Zr fuel in contact with either Zr-10wt%Gd or Zr-10wt%Er. Each alloy was fabricated from elemental feed material via melt-casting, and diffusion samples of nominal 1.5 mm thickness were prepared from the resulting alloy slugs. The samples were assembled into diffusion couples and annealed for periods of 14, 28, and 56 days at temperatures of 550°C, 600°C, and 650°C. Thus, the U-50Zr/Zr-10Er system and the U-50Zr/Zr-10Gd system were each annealed for three different time periods at each of three different temperatures, for an initial total of 18 diffusion interfaces that were to be studied. In practice, data was collected from only 12 of the 18 interfaces. At 650°C, the U-50wt%Zr alloy exists in the γ-phase region, which enabled the comparison of diffusion behavior between the δ phase and γ phase. Diffusion samples were examined by collecting composition profiles across the diffusion interface for each element via electron probe microanalysis. From the resulting experimental data diffusion coefficients were evaluated. Diffusion coefficients were found to be on the order of 10^-19 m2/s in the δ-phase systems, and 10^-17 m^2/s in the γ-phase systems. It was observed that atomic mobility of all diffusing species was generally greater in the U-50Zr/Zr-10Gd system than in the U-50Zr/Zr-10Er system; furthermore, it was found that diffusion rates were considerably higher above the phase transformation temperature into the γ phase, as indeed would be expected in the more open structure of the body-centered cubic γ phase, as compared to the hexagonal δ-phase U-Zr. However, values for diffusion coefficients measured in this study were considerably smaller than those found in past studies of δ-phase U-Zr, which are on the order of 10^-17 m^2/s. It is likely that diffusion was inhibited by the formation of stable metal oxides resulting from oxygen contamination; it is also possible that diffusion was suppressed by the presence of the erbium and gadolinium.
144

Growth of Metal-Nitride Thin Films by Pulsed Laser Deposition

Farrell, Ian Laurence January 2010 (has links)
The growth of thin-film metal nitride materials from elemental metal targets by plasma-assisted pulsed laser deposition (PLD) has been explored and analysed. A new UHV PLD growth system has been installed and assembled and its system elements were calibrated. A series of GaN thin films have been grown to calibrate the system. In-situ RHEED indicated that the films were single crystal and that growth proceeded in a three-dimensional fashion. SEM images showed heavy particulation of film surfaces that was not in evidence for later refractory metal nitride films. This may be connected to the fact that Ga targets were liquid while refractory metals were solid. Most GaN films were not continuous due to insufficient laser fluence. Continuous films did not exhibit photoluminescence. HfN films have been grown by PLD for the first time. Films grown have been shown to have high reflectivity in the visible region and low resistivity. These factors, along with their crystal structure, make them suitable candidates to be used as back-contacts in GaN LEDs and could also serve as buffer layers to enable the integration of GaN and Si technologies. Growth factors affecting the films’ final properties have been investigated. Nitrogen pressure, within the operating range of the plasma source, has been shown to have little effect on HfN films. Substrate temperature has been demonstrated to have more influence on the films’ properties, with 500 °C being established as optimum. ZrN films have also been grown by PLD. Early results indicated that they exhibit reflectivities 50 % ± 5 % lower than those of HfN. However, further growth and characterisation would be required in order to establish this as a fundamental property of ZrN as nitride targets were mostly used in ZrN production. Single-crystal epitaxial GdN and SmN films have been produced by PLD. This represents an improvement in the existing quality of GdN films reported in the literature, which are mostly polycrystalline. In the case of SmN, these are the first epitaxial films of this material to be grown. Film quality has been monitored in-situ by RHEED which has allowed growth to be tailored to produce ever-higher crystal quality. Post-growth analyses by collaborators was also of assistance in improving film growth. Substrate temperatures and nitrogen plasma parameters have been adjusted to find optimum values for each. In addition, laser fluence has been altered to minimise the presence of metal particulates in the films, which interfere with magnetic measurements carried out in analyses. Capping layers of Cr, YSZ or AlN have been deposited on the GdN and SmN prior to removal from vacuum to prevent their degradation upon exposure to atmospheric water vapour. The caps have been steadily improved over the course of this work, extending the lifetime of the nitride films in ambient. However, they remain volatile and this may persist since water vapour can enter the film at the edge regardless of capping quality. Optical transmission has shown an onset of absorption at 1.3 eV for GdN and 1.0 eV for SmN.
145

Azapropazone and derivatized EDTA and DTPA complexes as MRI contrast agents /

Fauconnier, Theresa K. January 1996 (has links)
Thesis (Ph.D.) -- McMaster University, 1997. / Includes bibliographical references (leaves 175-181). Also available via World Wide Web.
146

Magnetic resonance imaging in chronic achilles tendinopathy /

Shalabi, Adel, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 6 uppsatser.
147

Exploring the potential of protein cages as MRI contrast agents with an emphasis on protein cage characterization by mass spectrometry techniques

Liepold, Lars Otto. January 2009 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Trevor Douglas. Includes bibliographical references (leaves 127-140).
148

Yttrium / gadolinium & silicate co-substituted hydroxyapatite a neutron diffraction and magnetic resonance imaging study /

Duncan, Jo. January 2008 (has links)
Thesis (M.Sc.)--Aberdeen University, 2008. / Title from web page (viewed on March 9, 2009). Includes bibliographical references.
149

Estudo das propriedades do óxido BSCF para aplicação com cátodo em células a combustível de óxido sólido de temperatura intermediária (ITSOFC) / Study of BSCF oxide properties for application as cathode in intermediate temperature solid oxide fuel cell (ITSOFC)

BONTURIM, EVERTON 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:13Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:04Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
150

Estudo de sinterizacao de nitreto de silicio com adicoes dos oxidos de lantanio, gadolinio e aluminio

GUEDES e SILVA, CECILIA C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:44:13Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:58Z (GMT). No. of bitstreams: 1 06892.pdf: 5075463 bytes, checksum: 30143393f34292042091ede1469a42b6 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.0309 seconds