• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spinal cord stimulation in neuropathy : experimental studies of biochemistry and behaviour /

Cui, Jian-Guo, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Undertitel på omsl.: experimental studies of neorochemistry and behaviour. Härtill 9 uppsatser.
2

Studies on pain-related messengers and receptors in dorsal root ganglia and spinal cord /

Rydh-Rinder, Malin, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 6 uppsatser.
3

Regulation of signaling molecules in sensory neurons and spinal cord : studies on nerve injury models and transgenic mice /

Shi, Tie-Jun, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2001. / Härtill 10 uppsatser.
4

Characterisation of prostacyclin receptors in adult rat dorsal root ganglion cells.

January 2000 (has links)
Rowlands Dewi Kenneth. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 113-121). / Abstract --- p.i / Acknowledgements --- p.iii / Publications --- p.iv / Abbreviations --- p.v / Contents --- p.vii / Chapter Chapter 1 --- Prostaglandins --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Prostanoid biosynthesis and metabolism --- p.1 / Chapter 1.3 --- Prostaglandin receptors --- p.3 / Chapter 1.3.1 --- DP-receptors --- p.3 / Chapter 1.3.2 --- EP1-receptors --- p.4 / Chapter 1.3.3 --- EP2-receptors --- p.4 / Chapter 1.3.4 --- EP3-receptors --- p.5 / Chapter 1.3.5 --- EP4-receptors --- p.6 / Chapter 1.3.6 --- FP-receptors --- p.7 / Chapter 1.3.7 --- IP-receptors --- p.8 / Chapter 1.3.8 --- TP-receptors --- p.11 / Chapter 1.4 --- Agonists and antagonists --- p.11 / Chapter Chapter 2 --- Role of prostacyclin in pain modulation --- p.14 / Chapter 2.1 --- Pain --- p.14 / Chapter 2.2 --- Prostaglandins and pain --- p.15 / Chapter 2.3 --- Prostacyclin and pain --- p.16 / Chapter 2.3.1 --- [3H]-Iloprost binding sites --- p.16 / Chapter 2.3.2 --- IP-receptor mRNA --- p.17 / Chapter 2.3.3 --- IP-receptor knockout mice --- p.17 / Chapter 2.3.4 --- Direct nociceptive action of prostacyclin --- p.18 / Chapter 2.4 --- Treatment of prostanoid-induced pain --- p.19 / Chapter Chapter 3 --- Dorsal root ganglion cells --- p.21 / Chapter 3.1 --- In vitro model of pain --- p.21 / Chapter 3.2 --- Characteristics of cultured DRG cells --- p.22 / Chapter 3.2.1 --- Size and distribution --- p.22 / Chapter 3.2.2 --- Biochemical and physiological characteristics --- p.22 / Chapter 3.2.2.1 --- Gapsaicin-sensitive neurones --- p.23 / Chapter 3.2.2.2 --- Neuropeptide content --- p.23 / Chapter 3.2.2.3 --- Elevation of [Ca2+]i --- p.24 / Chapter 3.3 --- Effect of nerve growth factor --- p.24 / Chapter Chapter 4 --- Materials and solutions --- p.26 / Chapter 4.1 --- Materials --- p.26 / Chapter 4.2 --- Solutions --- p.30 / Chapter 4.2.1 --- Culture medium --- p.30 / Chapter 4.2.2 --- Buffers --- p.31 / Chapter 4.2.3 --- Solutions --- p.32 / Chapter Chapter 5 --- Development of dorsal root ganglion cell preparation --- p.33 / Chapter 5.1 --- Introduction --- p.33 / Chapter 5.2 --- Methods --- p.34 / Chapter 5.2.1 --- Dissection of dorsal root ganglia --- p.34 / Chapter 5.2.2 --- Preparation of a single-cell suspension --- p.34 / Chapter 5.2.2.1 --- Effect of trimming dorsal root ganglia --- p.34 / Chapter 5.2.2.2 --- Enzymatic dissociation --- p.35 / Chapter 5.2.2.3 --- Mechanical dissociation --- p.36 / Chapter 5.2.3 --- Neuronal cell enrichment --- p.36 / Chapter 5.2.3.1 --- Differential adhesion --- p.36 / Chapter 5.2.3.2 --- BSA gradient --- p.37 / Chapter 5.2.3.3 --- Combination of BSA gradient and differential adhesion --- p.37 / Chapter 5.2.4 --- Cell counting --- p.37 / Chapter 5.2.5 --- Culture conditions --- p.38 / Chapter 5.2.6 --- Size distribution of DRG cells --- p.39 / Chapter 5.2.7 --- Immunocytochemistry --- p.39 / Chapter 5.3 --- Results and discussion --- p.40 / Chapter 5.3.1 --- Preparation of single-cell suspension --- p.40 / Chapter 5.3.2 --- Neuronal cell enrichment --- p.42 / Chapter 5.3.3 --- Size distribution of DRG cells --- p.32 / Chapter 5.3.4 --- Effects of mitotic inhibitors and NGF --- p.45 / Chapter 5.3.5 --- Immunocytochemistry --- p.48 / Chapter 5.4 --- Conclusions --- p.48 / Chapter Chapter 6 --- Methods --- p.53 / Chapter 6.1 --- Dorsal root ganglion cell preparation --- p.53 / Chapter 6.1.1 --- Preparation of tissue culture plates and coverslips --- p.54 / Chapter 6.1.2 --- Preparation of Pasteur pipettes --- p.54 / Chapter 6.2 --- Measurement of adenylate cyclase activity --- p.55 / Chapter 6.2.1 --- Introduction --- p.55 / Chapter 6.2.2 --- Preparation of columns --- p.55 / Chapter 6.2.3 --- Measurement of [3H]-cyclic AMP production --- p.56 / Chapter 6.2.4 --- Data analysis --- p.57 / Chapter 6.3 --- Measurement of phospholipase C activity --- p.58 / Chapter 6.3.1 --- Introduction --- p.58 / Chapter 6.3.2 --- Preparation of columns --- p.58 / Chapter 6.3.3 --- Measurement of [3H]-inositol phosphate production --- p.59 / Chapter 6.3.4 --- Data analysis --- p.60 / Chapter 6.4 --- Measurement of [Ca2+]i --- p.60 / Chapter 6.4.1 --- Introduction --- p.60 / Chapter 6.4.2 --- Preparations of cells --- p.61 / Chapter 6.4.3 --- Measurement of Fura-2 fluorescence --- p.62 / Chapter 6.5 --- Measurement of neuropeptides --- p.62 / Chapter 6.5.1 --- Introduction --- p.62 / Chapter 6.5.2 --- Preparation of cells --- p.63 / Chapter 6.5.3 --- CGRP assay --- p.64 / Chapter 6.5.4 --- Substance P assay --- p.64 / Chapter 6.5.5 --- Purification of samples using Sep-Pak cartridges --- p.65 / Chapter Chapter 7 --- Characterisation of prostacyclin receptors on adult rat dorsal root ganglion cells --- p.66 / Chapter 7.1 --- Stimulation of adenylate cyclase --- p.66 / Chapter 7.1.1 --- Introduction --- p.66 / Chapter 7.1.2 --- Agonist concentration-response curves --- p.67 / Chapter 7.1.3 --- Cross-desensitisation experiments --- p.72 / Chapter 7.1.4 --- Evidence for EP3-receptors --- p.77 / Chapter 7.1.5 --- G-protein coupling of the IP-receptor --- p.77 / Chapter 7.1.6 --- Discussion --- p.78 / Chapter 7.1.7 --- Conclusions --- p.82 / Chapter 7.2 --- Stimulation of phospholipase C --- p.82 / Chapter 7.2.1 --- Introduction --- p.82 / Chapter 7.2.2 --- Agonist concentration-response curves --- p.83 / Chapter 7.2.3 --- G-protein coupling --- p.83 / Chapter 7.2.4 --- Discussion and Conclusions --- p.84 / Chapter 7.3 --- Stimulation of changes in [Ca2+]i --- p.87 / Chapter 7.3.1 --- Introduction --- p.87 / Chapter 7.3.2 --- Preliminary results --- p.87 / Chapter 7.3.3 --- Discussion and conclusions --- p.89 / Chapter Chapter 8 --- Neuropeptide release by adult rat dorsal root ganglion cells --- p.90 / Chapter 8.1 --- Introduction --- p.90 / Chapter 8.2 --- Methods and Results --- p.91 / Chapter 8.3 --- Discussion --- p.91 / Chapter 8.4 --- Conclusions --- p.92 / Chapter Chapter 9 --- Regulation of prostacyclin receptors on adult rat DRG cells --- p.93 / Chapter 9.1 --- Introduction --- p.93 / Chapter 9.2 --- Contribution of non-neuronal cells --- p.93 / Chapter 9.3 --- Effect of DRG cell density --- p.94 / Chapter 9.4 --- Effect of indomethacin --- p.99 / Chapter 9.5 --- Contribution of endogenously-produced non-prostanoid ligands --- p.100 / Chapter 9.6 --- Effect of PKC activation --- p.102 / Chapter 9.7 --- Discussion --- p.104 / Chapter 9.8 --- Conclusions --- p.106 / Chapter Chapter 10 --- General Discussion and Conclusions --- p.107 / Chapter 10.1 --- Development of DRG cell preparation --- p.107 / Chapter 10.2 --- Effect of prostanoid mimetics on intracellular messengers --- p.108 / Chapter 10.3 --- Regulation of prostacyclin receptors --- p.109 / Chapter 10.4 --- Role of prostacyclin in pain modulation --- p.111 / References --- p.113
5

Modulation of T-type Ca²⁺ channels in nociceptive neurons by reducing agents : cellular and molecular mechanisms /

Nelson, Michael Todd. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2007. / Includes bibliographical references. Also available online through Digital Dissertations.
6

Expression of stimulatory and inhibitory molecules in interactions between natural killer cells and neurons /

Backström, Eva, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
7

Spinal cord injury: mechanical and molecular aspects /

Josephson, Anna, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.
8

Characterization of toll-like receptor 4 in the neurons and glia of the dorsal root ganglion.

January 2014 (has links)
背根神經節(DRG)上的初級感覺神經元通常負責感覺從環境中有害的刺激,但新出現的證據表明,它亦負責對危險的感覺。Toll-樣受體-4(TLR4)通常見於小膠質細胞,它是負責識別病原體相關分子模式(PAMPs)或損傷相關分子模式(DAMPs)並誘發炎症。奇怪的是,儘管TLR4在中樞神經系統通常見於神經膠質細胞,在DRG發現的TLR4僅見於初級感覺神經元,但從未見於周邊的衛星膠質細胞(SGC)。而重要的是,在感覺神經節中激活TLR4是會導致神經病理性疼痛的,但我們仍然未知道初級感覺神經元上的TLR4是否導致疼痛的唯一來源。本研究旨在探討在DRG細胞的TLR4信號傳導的分子和細胞機理,並探討在DRG的神經元和膠質細胞上TLR4活動的差異,在生物學上有甚麼意義。 / 為了研究在DRG神經元和膠質細胞的相互作用,我們首先在一個既定的混合DRG細胞培養模型上研究了谷氨酰胺合成酶( GS )的表達模式。GS是一種只會在SGC上表達的特異性酶,並於神經元和神經膠質細胞之間的谷氨酰胺 - 谷氨酸循環產生相互作用。在典型的DRG細胞培養,神經元通過擴散因子促進了GS在神經膠質細胞上的表達,然而,GS的表達亦受到TLR4激動劑,即脂多醣(LPS),的抑制。這表明DRG神經元和神經膠質細胞的關係受到TLR4介導的炎症之影響。在混合DRG細胞中,我們對TLR4-免疫反應(IR)進行了鑑定,發現TLR4最主要的是表達在神經元細胞的表面。另外,LPS( 1微克/毫升,2小時)會刺激混合DRG細胞,通過在DRG細胞中MyD88依賴性信令,誘導環加氧酶-2(COX -2),白細胞介素-1β( IL-1β)和腫瘤壞死因子-α(TNFα)的轉錄。此外,在DRG細胞, LPS( 1微克/毫升, 24小時)亦會觸發依賴COX-2 的前列腺素E2(PGE₂)和的前列環素(PGI₂)的產生。但在LPS刺激後,我們發現DRG神經元和神經膠質細胞都對 COX-2-IR呈陽性反應。這證明DRG神經膠質細胞對TLR4誘發的神經炎症也擔任一定的角色。 / 為了純粹研究神經膠質細胞有沒有任何TLR4活性,我們把神經元從混合DRG細胞中除去,從而把神經膠質細胞純化。出乎意料的是,在純化後,大約80的神經膠質細胞對TLR4 -IR呈陽性反應。而且,時間和濃度依賴性的研究表明,純化後的神經膠質細胞對LPS刺激的COX-2表達反應在有效性和效率上比混合DRG細胞的顯著更高。明顯地,神經元對神經膠質細胞的TLR4活性有抑制作用。我們並且發現,神經元的抑制作用是透過由細胞與細胞之間的接觸介導,而不是由擴散因子介導。 / 重要的是, LPS也能誘導純化後的神經膠質細胞去產生依賴COX-2活性的前列腺素E2(PGE₂)。反過來, PGE₂能區別地調節依賴TLR4的炎症基因轉錄,說明在DRG 由TLR4介導的神經炎症是受多重複雜的機理控制。然而有趣的是,從受熱休克性損害的感覺神經元所收集的培養基可以激活純化膠質細胞,並通過對TLR4局部依賴性的方式,誘導COX-2的轉錄。此外,我們利用斑馬魚作為疼痛行為反應的模型,發現COXs的活性與瞬時受體電位通道亞家族V1( TRPV1)有密切關係。斑馬魚幼蟲的疼痛行為反應是一個適合於篩選新型鎮痛化合物的體內模型。 / 總括來說,透過細胞與細胞之間的接觸和擴散因子,感覺神經元可以控制神經膠質細胞的表型。我們的研究確定感覺神經元是在DRG中表達TLR4的主要細胞類型,但當神經元施加的抑制被削弱,SGC可以成為完全勝任TLR4信息傳遞的細胞。因此我們推測TLR4的活性在DRG中被嚴格調控,以防止不必要的神經炎症發生。至於未來,我們認為在DRG中的TLR4/COX-2/PGE₂信號通路可以成為研究方的新型鎮痛化合物的方向。而轉基因斑馬魚則可用作篩選新型鎮痛化合物的工具。 / Primary sensory neurons of the dorsal root ganglia (DRG) are classically responsible for the detection of physiological stimuli from the environment, but emerging evidences suggests that they are also involved in the sensation of danger. Toll-like receptor 4 (TLR4) is commonly found on microglia for the recognition of pathogen- or damage- associated molecular patterns (PAMPs or DAMPs) and to the activation of TLR4 leads to inflammation. Curiously, while commonly found in glial cells in central nervous system, TLR4 expression was only found in primary sensory neurons but not the satellite glial cells (SGCs) in the DRG. Importantly, activation of TLR4 in sensory ganglia mediates neuropathic pain, but it remains unknown whether neurons are the only source of TLR4 activity. The present study aims to study the cellular and molecular mechanism(s) of TLR4 signalings and explore the biological significance of differential cellular TLR4 activity in the DRG. / To investigate neuron-glia interactions in the DRG, the expression of glutamine synthetase (GS), a SGC-specific enzyme in the glutamine-glutamate shuttle between neuron and glia, was studied in an established model of mixed DRG cells culture. In typical mixed DRG cell cultures, neurons promoted the GS expression in glial cells through diffusible factors. However, GS expression was negatively regulated by theTLR4 agonist, lipopolysaccharide (LPS), indicative of a change in neuron-glia relationships by TLR4 mediated inflammation. In mixed DRG cells, cell surface TLR4-immunoreactivity (-ir) was predominantly identified on the neurons. LPS (1 μg/mL, 2 h) stimulation induced cyclooxygenases-2 (COX-2), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) transcription through MyD88-dependent signalings in DRG cells. Furthermore, LPS (1 μg/mL, 24 h) triggered COX-2-dependent production of prostaglandin E₂ (PGE₂) and prostacyclin (PGI₂) in mixed DRG cells. / To study the TLR4 activity of glial cells, glial cell cultures were purified by removing neurons from mixed DRG cell culture. Unexpectedly, approximately 80% of purified glial cells become TLR4-ir positive. Moreover, a time- and concentration-dependent study showed that the efficacy and efficiency of purified glial cells to express COX-2 in response to LPS was significantly higher than that of mixed DRG cells. We found that neuron inhibited glial cells through cell-cell contact, but not by diffusible factors. Importantly, LPS also induced COX-2 dependent PGE₂ production in purified glial cells. In turn, PGE₂ can differentially modulate TLR4-dependent gene transcription, suggestive of a complex regulation of TLR4-mediated inflammation in the DRG. Intriguingly, conditioned media from heat-shocked damaged sensory neurons activated purified glial cells to induce COX-2-transcription through a partially TLR4-dependent mechanism. Using zebrafish as a model of nocifensive behavior, we found that the activity of COXs was closely associated with the transient receptor potential channel subfamily V1 (TRPV1), and the nocifensive behavior of zebrafish larvae is suitable for in vivo screening of novel analgesic compounds. / To conclude, sensory neurons regulate the phenotypes of DRG glial cells through cell-cell contact and diffusible factors. Here, sensory neurons are confirmed to be the predominant cell type expressing TLR4 in the DRG, but SGCs become fully competent for TLR4 signalings when the neuronal inhibitions are diminished. We therefore hypothesize that TLR4 activity is tightly regulated in the DRG to prevent unwanted neuroinflammation. Future studies with genetically modified zebrafish can be used for the screening of novel analgesic compound targeting the TLR4/COX-2/PGE₂ signaling pathway. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Tse, Kai Hei. / Thesis (Ph.D.) Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 190-222). / Abstracts also in Chinese.
9

Investigating a cell replacement therapy in the inner ear /

Hu, Zhengqing, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 6 uppsatser.
10

Estudo da denervação renal bilateral e da imunorreatividade para substância P (SP), CGRP e receptor 1 para neurocinina (NK1R) no gânglio da raiz dorsal e parede pélvica renal na prole de ratas submetidas a restrição proteica gestacional / Study about renal denervation and immunoreactivity for substance P (SP), CGRP and neurokinin 1 receptor (NK1R) in dorsal root gangion and renal pelvic wall in the offspring of rats submitted to gestational protein restriction

Custódio, Augusto Henrique, 1983- 25 August 2018 (has links)
Orientador: Jose Antonio Rocha Gontijo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-25T13:32:34Z (GMT). No. of bitstreams: 1 Custodio_AugustoHenrique_M.pdf: 4527903 bytes, checksum: 4f67c2ab2501e1bba65a4d2cf2320dfe (MD5) Previous issue date: 2014 / Resumo: A programação fetal é um processo fisiológico que assegura, durante o desenvolvimento intrauterino, a adaptação para o mundo exterior. Ou seja, o organismo é "moldável" por estímulos durante sua formação e dependendo do insulto experimentado, existe a possibilidade de mudanças estruturais e funcionais que podem predispor o indivíduo a doenças na vida adulta. O modelo de restrição proteica, assim como outros modelos, leva a um "stress" gestacional e, segundo a hipótese de Barker, programa a prole ao desenvolvimento de doenças na vida adulta, dentre elas a hipertensão arterial. Os rins são órgãos fundamentais na manutenção do equilíbrio hemodinâmico. Mudanças morfológicas e neuroendócrinas nos rins levam a alterações hidroeletrolíticas frequentemente associadas à patogênese da hipertensão arterial. A gênese desta doença ainda não está bem descrita, por envolver alterações multifatoriais, dentre elas, modificações da atividade neural tanto central quanto periférica, que podem ser um indicativo da elevação pressórica em nosso modelo. A atividade simpática renal é um importante modulador da excreção dos eletrólitos e, quando alterada, promove maior ou menor retenção de sais, principalmente o sódio, podendo contribuir para a elevação da volemia e consequentemente da hipertensão arterial. Diversos neuropeptídeos estão envolvidos na atividade simpática renal e os níveis destes são um importante marcador na gênese da hipertensão. Dentre esses peptídeos estão a Substância P (SP), seu receptor NK1R e o Peptídeo Relacionado ao Gene da Calcitonina (CGRP). Nossos resultados mostraram redução na imunorreatividade de SP, CGRP e aumento do receptor 1 para neurocinina nos gânglios da raiz dorsal da prole de ratas submetidas à restrição proteica gestacional. Identificamos também a elevação dos níveis de CGRP na parede pélvica renal. Assim, acreditamos que haja alterações na neuromodulação da atividade aferente renal, o que pode ser um fator contribuinte para a manutenção do estado hipertensivo neste modelo experimental / Abstract: A fetal programming is a physiologic process that ensures an adaptation for external world during the intra uterine development. In this period, the organism is "moldable" by stimulus that happens during its formation, which ensures adequate phenotypes formation for different environments. Kidneys are the most important organs when it has to do with maintaining the organism hemodynamic balance and also morphological and neuroendocrine alterations, which leads to fluid and eletrolytes changes, frequently associated to arterial hypertension pathogenesis. The genesis of this disease is not well described yet. It involves multifactorial changes like the neural activity in both central as peripheral, which, in our model, may be an indicative of increased pressure. The renal sympathetic activity is an important excretion modulator of electrolytes and when amended, promotes greater or lesser retention of salts, mainly sodium, contributing to the increase in blood volume and consequently hypertension. Several neuropeptides are involved in renal sympathetic activity, and these levels are an important marker in the genesis of hypertension. Among these peptides we find substance P (SP) and its receptor NK1R, and Related Peptide Calcitonin Gene (CGRP). Our research showed reduced immunoreactivity of SP, CGRP and increased neurokinin 1 receptor in dorsal root ganglia among the offspring of rats subjected to gestational protein restriction. According to this result, we believe that there are changes in afferent renal activity neuromodulation which may be a contributing factor for maintenance of hypertension in this experimental model / Mestrado / Medicina Experimental / Mestre em Ciências

Page generated in 0.0568 seconds