Spelling suggestions: "subject:"deceptors, prostaglandin"" "subject:"deceptors, rostaglandin""
1 |
Characterisation of vascular prostaglandin E receptors and neuronal prostacyclin receptors.January 1996 (has links)
by Yueming Qian. / Publication date from spine. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 209-244). / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.iii / PUBLICATIONS --- p.iv / Chapter CHAPTER 1 --- General Introduction --- p.1 / Chapter CHAPTER 2 --- Methodology --- p.53 / Chapter CHAPTER 3 --- Characterisation of Vascular EP-Receptors --- p.76 / Chapter PART 1 --- EP-receptors on the human isolated pulmonary artery --- p.77 / Chapter PART 2 --- EP-receptors on the guinea-pig isolated aorta --- p.100 / Chapter CHAPTER 4 --- Neuronal IP-Receptors in the Rat Colon --- p.130 / Chapter CHAPTER 5 --- Differential Effects of Non-Prostanoid Prostacyclin Mimetics on Human Pulmonary Artery and Rat Colon --- p.173 / Chapter CHAPTER 6 --- General Discussion and Perspective --- p.200 / REFERENCES --- p.209
|
2 |
Stimulus-response coupling of prostaglandin receptors in neutrophils.January 1996 (has links)
by Zhi-Hui Xie. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 214-244). / Abstract --- p.i / Acknowledgments --- p.iv / Publications --- p.v / Abbreviations --- p.vi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Neutrophils --- p.1 / Chapter 1.1.1 --- General --- p.1 / Chapter 1.1.2 --- HL-60 cells as model of neutrophils --- p.3 / Chapter 1.1.3 --- Physiological role --- p.6 / Chapter 1.1.4 --- Intracellular signalling --- p.12 / Chapter 1.1.4.1 --- General --- p.12 / Chapter 1.1.4.2 --- Intracellular signalling linked by FMLP receptors --- p.13 / Chapter 1.1.4.3 --- Intracellular signalling of neutrophil functions --- p.17 / Chapter 1.2 --- Neutrophil aggregation --- p.21 / Chapter 1.2.1 --- General --- p.21 / Chapter 1.2.2 --- Measurement of aggregation --- p.24 / Chapter 1.3 --- Prostaglandins/Prostanoids --- p.25 / Chapter 1.3.1 --- General --- p.25 / Chapter 1.3.2 --- Prostanoid receptors --- p.27 / Chapter 1.3.2.1 --- Agonists and antagonists --- p.28 / Chapter 1.3.2.2 --- EP1 receptors --- p.32 / Chapter 1.3.2.3 --- EP2 receptors --- p.33 / Chapter 1.3.2.4 --- EP3 receptors --- p.34 / Chapter 1.3.2.5 --- EP4 receptors --- p.37 / Chapter 1.3.2.6 --- DP receptors --- p.38 / Chapter 1.3.2.7 --- IP receptors --- p.39 / Chapter 1.3.2.8 --- TP receptors --- p.40 / Chapter 1.3.2.9 --- FP receptors --- p.40 / Chapter 1.4 --- Regulation of neutrophil functions by prostanoids --- p.42 / Chapter 1.4.1 --- Inhibition --- p.42 / Chapter 1.4.2 --- Activation --- p.46 / Chapter 1.4.3 --- Role of cyclic AMP --- p.48 / Chapter 1.5 --- Aim of this study --- p.51 / Chapter Chapter 2 --- Materials and methods --- p.53 / Chapter 2.1 --- Materials and solutions --- p.53 / Chapter 2.1.1 --- Materials --- p.53 / Chapter 2.1.2 --- "Buffers, solutions and cell culture medium" --- p.62 / Chapter 2.2 --- Methods --- p.64 / Chapter 2.2.1 --- Culture of HL-60 cells --- p.64 / Chapter 2.2.2 --- Differentiation of HL-60 cells --- p.65 / Chapter 2.2.3 --- Preparation of neutrophils --- p.65 / Chapter 2.2.4 --- Measurement of neutrophil aggregation --- p.67 / Chapter 2.2.5 --- Measurement of [Ca2+]i --- p.69 / Chapter 2.2.6 --- Microscopic observation --- p.70 / Chapter 2.2.7 --- Measurement of [3H]-cyclic AMP accumulation --- p.72 / Chapter 2.2.8 --- Measurement of [3H]-PGE2 receptor binding --- p.73 / Chapter 2.3 --- Data analysis --- p.76 / Chapter Chapter 3 --- Differentiation of HL-60 cells --- p.77 / Chapter 3.1 --- Introduction --- p.77 / Chapter 3.2 --- Results and discussion --- p.78 / Chapter 3.2.1 --- The observation of cell proliferation and morphology --- p.78 / Chapter 3.2.2 --- The response of HL-60 cells to FMLP --- p.80 / Chapter 3.2.3 --- The response of HL-60 cells to ATP --- p.83 / Chapter 3.3 --- Conclusion --- p.84 / Chapter Chapter 4 --- Activation of dHL-60 cells by PGE2 --- p.90 / Chapter 4.1 --- Effect of PGE2 on cell aggregation and [Ca2+]i --- p.90 / Chapter 4.1.1 --- Introduction --- p.90 / Chapter 4.1.2 --- Results --- p.90 / Chapter 4.1.2.1 --- Effect of PGE2 on cell aggregation --- p.90 / Chapter 4.1.2.2 --- Effect of PGE2 on [Ca2+]i --- p.91 / Chapter 4.1.2.3 --- Effect of PGE2 on human neutrophils --- p.93 / Chapter 4.1.2.4 --- Do PGE2 and PGE1 act at the same receptor? --- p.94 / Chapter 4.1.3 --- Discussion --- p.95 / Chapter 4.1.3.1 --- Activation of dHL-60 cells by PGE2 --- p.95 / Chapter 4.1.3.2 --- Effect of PGE2 on human neutrophils --- p.99 / Chapter 4.2 --- What does the aggregation response mean? --- p.101 / Chapter 4.2.1 --- Introduction --- p.101 / Chapter 4.2.2 --- Results --- p.101 / Chapter 4.2.2.1 --- Observation by light microscopy --- p.101 / Chapter 4.2.2.2 --- Observation by Scanning Electron Microscope --- p.102 / Chapter 4.2.3 --- Discussion --- p.103 / Chapter 4.3 --- Conclusion --- p.106 / Chapter Chapter 5 --- Characterisation of prostanoid receptors on dHL-60 cells --- p.121 / Chapter 5.1 --- Introduction --- p.121 / Chapter 5.2 --- Results --- p.121 / Chapter 5.2.1 --- Effect of prostanoid receptor agonists and antagonists on cell aggregation --- p.121 / Chapter 5.2.2 --- Effect of prostanoid receptor agonists on [Ca2+]i --- p.122 / Chapter 5.3 --- Discussion --- p.123 / Chapter 5.3.1 --- Involvement of prostanoid receptors --- p.123 / Chapter 5.3.2 --- Involvement of EP receptors --- p.126 / Chapter 5.4 --- Conclusion --- p.130 / Chapter Chapter 6 --- Binding studies of [3H]-PGE2 on rat neutrophils and dHL-60 cells --- p.137 / Chapter 6.1 --- Introduction --- p.137 / Chapter 6.2 --- Results --- p.138 / Chapter 6.3 --- Discussion --- p.140 / Chapter Chapter 7 --- The mechanism of action of PGE2 in activating dHL-60 cells --- p.146 / Chapter 7.1 --- Introduction --- p.146 / Chapter 7.2 --- Methods --- p.147 / Chapter 7.2.1 --- Pretreatment with enzyme inhibitors --- p.147 / Chapter 7.2.2 --- Pretreatment with toxins --- p.148 / Chapter 7.2.3 --- Pretreatment with PMA --- p.148 / Chapter 7.3 --- Results and discussion --- p.148 / Chapter 7.3.1 --- The role of Ca2+ --- p.149 / Chapter 7.3.2 --- The role of cyclic AMP --- p.152 / Chapter 7.3.3 --- The role of PI3-kinase --- p.159 / Chapter 7.3.4 --- The role of PLD --- p.165 / Chapter 7.3.5 --- The role of PLA2 --- p.169 / Chapter 7.3.6 --- The role of tyrosine kinase --- p.171 / Chapter 7.3.7 --- The role of PKC --- p.173 / Chapter 7.3.8 --- The role of G protein --- p.180 / Chapter 7.3.9 --- The role of cyclic GMP --- p.185 / Chapter 7.3.10 --- The role of KATP channels --- p.186 / Chapter 7.4 --- Conclusion --- p.187 / Chapter Chapter 8 --- General discussion and conclusion --- p.209 / References --- p.214
|
3 |
Characterization of prostanoid receptors /Carlisle, Steven James. January 1997 (has links)
Thesis (Ph. D.)--University of Virginia, 1997. / Includes bibliographical references (93-107). Also available online through Digital Dissertations.
|
4 |
An investigation into the multiple coupling capacity of prostacyclin receptors.January 2001 (has links)
Kam Yiu-wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 200-215). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.iii / Publications --- p.iv / Abbreviations --- p.v / Contents --- p.vii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- G protein-coupled receptors --- p.1 / Chapter 1.1.1 --- Introduction --- p.1 / Chapter 1.1.2 --- G protein-coupled receptors --- p.2 / Chapter 1.1.3 --- Heterotrimeric G-proteins --- p.4 / Chapter 1.1.4 --- Second messenger systems --- p.5 / Chapter 1.1.5 --- Mechanism of GPCR activation --- p.6 / Chapter 1.1.6 --- GPCR cross talk --- p.8 / Chapter 1.2 --- Receptor theory --- p.10 / Chapter 1.2.1 --- Introduction --- p.10 / Chapter 1.2.2 --- Two-state model --- p.11 / Chapter 1.2.3 --- Three-state model --- p.12 / Chapter 1.2.4 --- Extended ternary complex model --- p.12 / Chapter 1.2.5 --- Multiple receptor state --- p.13 / Chapter 1.2.6 --- Constitutively active mutant receptors --- p.14 / Chapter 1.3 --- Agonist trafficking --- p.15 / Chapter 1.3.1 --- Introduction --- p.15 / Chapter 1.3.2 --- Effect of agonist efficacy on receptor coupling --- p.17 / Chapter 1.3.3 --- Effect of receptor expression level on receptor coupling --- p.17 / Chapter 1.3.4 --- Receptor promiscuity --- p.18 / Chapter 1.3.5 --- Agonist-induced conformational changes --- p.19 / Chapter 1.3.5.1 --- Conformational induction --- p.19 / Chapter 1.3.5.2 --- Conformational selection --- p.19 / Chapter 1.3.6 --- Receptor/G-protein system --- p.20 / Chapter 1.3.7 --- Implication of agonist trafficking --- p.21 / Chapter 1.4 --- Receptor switching --- p.22 / Chapter 1.4.1 --- Introduction --- p.22 / Chapter 1.4.2 --- Receptor switching --- p.23 / Chapter Chapter 2 --- Prostacyclin receptors --- p.34 / Chapter 2.1 --- General properties of prostacyclin --- p.34 / Chapter 2.1.1 --- Synthesis of prostacyclin --- p.34 / Chapter 2.1.2 --- Prostacyclin and its mimetics --- p.34 / Chapter 2.1.3 --- Characterization of IP-receptors --- p.36 / Chapter 2.1.3.1 --- Classification of IP-receptors --- p.36 / Chapter 2.1.3.2 --- Distribution of IP-receptors in the peripheral system --- p.36 / Chapter 2.1.3.3 --- Distribution of IP-receptors in the central nervous system --- p.38 / Chapter 2.1.3.4 --- Structure of IP-receptors --- p.39 / Chapter 2.1.4 --- Anti-thrombotic role of prostacyclin --- p.40 / Chapter 2.1.5 --- Cytoprotective role of prostacyclin --- p.41 / Chapter 2.1.6 --- Role of prostacyclin in adipogenesis --- p.42 / Chapter 2.2 --- Coupling capacity of IP-receptors --- p.43 / Chapter 2.2.1 --- Introduction --- p.43 / Chapter 2.2.2 --- Interaction with Gs --- p.44 / Chapter 2.2.3 --- Interaction with Gi --- p.45 / Chapter 2.2.4 --- Interaction with Gq --- p.45 / Chapter 2.2.5 --- Interaction with PPARs --- p.43 / Chapter 2.2.6 --- IP-receptor isoprenylation --- p.49 / Chapter 2.3 --- Regulation of IP-receptors --- p.50 / Chapter 2.3.1 --- Mechanism of signal termination --- p.50 / Chapter 2.3.2 --- Desensitization of IP-receptors --- p.51 / Chapter 2.3.3 --- Internalization of IP-receptors --- p.53 / Chapter Chapter 3 --- Materials and solutions --- p.59 / Chapter 3.1 --- Materials --- p.59 / Chapter 3.2 --- "Culture media, buffers and solutions" --- p.53 / Chapter 3.2.1 --- Culture media --- p.63 / Chapter 3.2.2 --- Buffers --- p.64 / Chapter 3.2.3 --- Solutions --- p.65 / Chapter Chapter 4 --- Methods --- p.67 / Chapter 4.1 --- Cell culture --- p.67 / Chapter 4.2 --- Mammalian cell transfection --- p.68 / Chapter 4.2.1 --- Preparation of plasmid DNA --- p.68 / Chapter 4.2.2 --- Transient transfection of mammalian cells --- p.71 / Chapter 4.2.3 --- β-galactosidase assay --- p.73 / Chapter 4.2.3.1 --- Introduction --- p.73 / Chapter 4.2.3.2 --- Preparation of cell lysate --- p.73 / Chapter 4.2.3.3 --- Micro β-galactosidase assay --- p.73 / Chapter 4.3 --- Measurement of adenylate cyclase activity --- p.74 / Chapter 4.3.1 --- [3H]-adenine prelabelling method --- p.74 / Chapter 4.3.1.1 --- Preparation of columns --- p.74 / Chapter 4.3.1.2 --- Incubation of cells --- p.75 / Chapter 4.3.1.3 --- Measurement of [3H]-cyclic AMP production --- p.75 / Chapter 4.3.1.4 --- Data analysis --- p.76 / Chapter 4.3.2 --- cAMP [125I]-scintillation proximity assay (SPA) --- p.77 / Chapter 4.3.2.1 --- Introduction --- p.77 / Chapter 4.3.2.2 --- Cell lysis method --- p.77 / Chapter 4.3.2.3 --- cAMP [I25I]-scintillation proximity assay --- p.78 / Chapter 4.4 --- Measurement of phospholipase C activity --- p.78 / Chapter 4.4.1 --- Introduction --- p.78 / Chapter 4.4.1.1 --- Preparation of columns --- p.78 / Chapter 4.4.1.2 --- [3H]-inositol phosphate assay --- p.79 / Chapter 4.4.1.3 --- Measurement of [3H]-inositol phosphate production --- p.79 / Chapter 4.4.1.4 --- Data analysis --- p.80 / Chapter 4.4.2 --- "D-myo-Inositol 1,4,5-trisphosphate (IP3) [3H] assay system" --- p.81 / Chapter 4.4.2.1 --- Introduction --- p.81 / Chapter 4.4.2.2 --- Sample preparation --- p.81 / Chapter 4.4.2.3 --- "D-myo-Inositol 1,4,5-trisphosphate (IP3) [3H] assay system" --- p.82 / Chapter 4.5 --- Measurement of changes in intracellular Ca2+ concentration --- p.82 / Chapter 4.5.1 --- Introduction --- p.82 / Chapter 4.5.2 --- Cell preparation --- p.83 / Chapter 4.5.3 --- Measurement of Fura-2 fluorescence --- p.83 / Chapter 4.6 --- Radioligand binding --- p.84 / Chapter 4.6.1 --- Introduction --- p.84 / Chapter 4.6.2 --- [3H]-iloprost ligand binding --- p.85 / Chapter 4.6.3 --- Data analysis --- p.86 / Chapter 4.7 --- Cytotoxicity test using trypan blue exclusion test --- p.86 / Chapter Chapter 5 --- Multiple coupling capacity of prostacyclin receptors in CHO cells --- p.88 / Chapter 5.1 --- Introduction --- p.88 / Chapter 5.2 --- Method --- p.88 / Chapter 5.3 --- Results and Discussion --- p.89 / Chapter 5.3.1 --- IP agonist log concentration-response curves for [3H]-cAMP and [3H]-inositol phosphate production in mIP-CHO cells --- p.89 / Chapter 5.3.2 --- Effect of varying Gαs cDNA concentration on cicaprost-stimulated [3H]-cAMP and [3H]-inositol phosphate production in mlP-CHO cells --- p.90 / Chapter 5.3.3 --- Effect of varying Gαq cDNA concentration on cicaprost-stimulated [3H]-cAMP and [3H]-inositol phosphate production in mlP-CHO cells --- p.92 / Chapter 5.4 --- Conclusion --- p.95 / Chapter Chapter 6 --- Multiple coupling capacity of prostacyclin receptors in neuroblastoma cells --- p.113 / Chapter 6.1 --- Introduction --- p.113 / Chapter 6.2 --- Method --- p.114 / Chapter 6.3 --- Results and Discussion --- p.114 / Chapter 6.3.1 --- Characterization of prostanoid receptors in SK-N-SH cells --- p.114 / Chapter 6.3.2 --- Property of IP-receptor signaling in SK-N-SH cells --- p.116 / Chapter 6.3.3 --- Effect of Gαq subunits on PLC activation in SK-N-SH cells --- p.117 / Chapter 6.3.4 --- Coupling capacity of IP-receptorin rat/mouse neuroblastoma (NG108-15) cells --- p.119 / Chapter 6.4 --- Conclusion --- p.123 / Chapter Chapter 7 --- Agonist trafficking --- p.133 / Chapter 7.1 --- Introduction --- p.133 / Chapter 7.2 --- Method --- p.134 / Chapter 7.3 --- Results and Discussion --- p.134 / Chapter 7.3.1 --- Simultaneous measurement of AC and PLC activation in metabolically-labelled mIP-CHO cells --- p.134 / Chapter 7.3.1.1 --- Effect of IBMX on PLC activation --- p.135 / Chapter 7.3.1.2 --- Effect of Li+ ion on AC activation --- p.135 / Chapter 7.3.1.3 --- Separation of [3H]-adenine and [3H]-inositol using column chromatography method --- p.136 / Chapter 7.3.2 --- Measurement of AC and PLC activation using different assay systems --- p.137 / Chapter 7.3.2.1 --- cAMP 125I-Scintillation Proximity Assay System --- p.137 / Chapter 7.3.2.2 --- "D-myo-Inositol 1,4,5-trisphosphate (IP3) [3H]-assay system" --- p.138 / Chapter 7.4 --- Conclusion --- p.139 / Chapter Chapter 8 --- Regulation of prostacyclin receptor coupling --- p.147 / Chapter 8.1 --- Introduction --- p.147 / Chapter 8.2 --- Methods --- p.149 / Chapter 8.3 --- Results and Discussion --- p.150 / Chapter 8.3.1 --- Role of protein kinases on IP-receptor activity --- p.150 / Chapter 8.3.2 --- Effect of SQ22536 on IP-receptor activity --- p.155 / Chapter 8.3.3 --- Role of PKA phosphorylation site in mIP-receptor activity --- p.156 / Chapter 8.4 --- Conclusion --- p.157 / Chapter Chapter 9 --- Prostacyclin receptor isoprenylation --- p.171 / Chapter 9.1 --- Introduction --- p.171 / Chapter 9.2 --- Method --- p.172 / Chapter 9.3 --- Results and Discussion --- p.173 / Chapter 9.4 --- Conclusion --- p.175 / Chapter Chapter 10 --- IP/DP chimeric receptors --- p.178 / Chapter 10.1 --- Introduction --- p.178 / Chapter 10.2 --- Method --- p.179 / Chapter 10.3 --- Results and Discussion --- p.180 / Chapter 10.3.1 --- Property of IP/DP chimeric receptors --- p.180 / Chapter 10.3.2 --- "ID1 chimeric receptor mutant receptors (M4, M5, M6)" --- p.182 / Chapter 10.3.3 --- "Mutant mIP-receptors (Ml, M2, M3)" --- p.183 / Chapter 10.3.4 --- Comparison between M5 and ID1 receptors --- p.184 / Chapter 10.4 --- Conclusion --- p.184 / Chapter Chapter 11 --- General Discussion and Conclusions --- p.193 / Chapter 11.1 --- Introduction --- p.193 / Chapter 11.2 --- Multiple coupling capacity of prostacyclin receptors --- p.193 / Chapter 11.3 --- Factors influencing prostacyclin receptor coupling --- p.196 / Chapter 11.4 --- Prostacyclin receptor cross talk and regulation --- p.198 / References --- p.200
|
5 |
Investigation into the mechanisms of prostanoid-induced emesis in the ferret and suncus murinus. / CUHK electronic theses & dissertations collectionJanuary 2001 (has links)
Kan Ka-wing. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. [161]-[184]). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
6 |
Characterisation of prostacyclin receptors in adult rat dorsal root ganglion cells.January 2000 (has links)
Rowlands Dewi Kenneth. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 113-121). / Abstract --- p.i / Acknowledgements --- p.iii / Publications --- p.iv / Abbreviations --- p.v / Contents --- p.vii / Chapter Chapter 1 --- Prostaglandins --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Prostanoid biosynthesis and metabolism --- p.1 / Chapter 1.3 --- Prostaglandin receptors --- p.3 / Chapter 1.3.1 --- DP-receptors --- p.3 / Chapter 1.3.2 --- EP1-receptors --- p.4 / Chapter 1.3.3 --- EP2-receptors --- p.4 / Chapter 1.3.4 --- EP3-receptors --- p.5 / Chapter 1.3.5 --- EP4-receptors --- p.6 / Chapter 1.3.6 --- FP-receptors --- p.7 / Chapter 1.3.7 --- IP-receptors --- p.8 / Chapter 1.3.8 --- TP-receptors --- p.11 / Chapter 1.4 --- Agonists and antagonists --- p.11 / Chapter Chapter 2 --- Role of prostacyclin in pain modulation --- p.14 / Chapter 2.1 --- Pain --- p.14 / Chapter 2.2 --- Prostaglandins and pain --- p.15 / Chapter 2.3 --- Prostacyclin and pain --- p.16 / Chapter 2.3.1 --- [3H]-Iloprost binding sites --- p.16 / Chapter 2.3.2 --- IP-receptor mRNA --- p.17 / Chapter 2.3.3 --- IP-receptor knockout mice --- p.17 / Chapter 2.3.4 --- Direct nociceptive action of prostacyclin --- p.18 / Chapter 2.4 --- Treatment of prostanoid-induced pain --- p.19 / Chapter Chapter 3 --- Dorsal root ganglion cells --- p.21 / Chapter 3.1 --- In vitro model of pain --- p.21 / Chapter 3.2 --- Characteristics of cultured DRG cells --- p.22 / Chapter 3.2.1 --- Size and distribution --- p.22 / Chapter 3.2.2 --- Biochemical and physiological characteristics --- p.22 / Chapter 3.2.2.1 --- Gapsaicin-sensitive neurones --- p.23 / Chapter 3.2.2.2 --- Neuropeptide content --- p.23 / Chapter 3.2.2.3 --- Elevation of [Ca2+]i --- p.24 / Chapter 3.3 --- Effect of nerve growth factor --- p.24 / Chapter Chapter 4 --- Materials and solutions --- p.26 / Chapter 4.1 --- Materials --- p.26 / Chapter 4.2 --- Solutions --- p.30 / Chapter 4.2.1 --- Culture medium --- p.30 / Chapter 4.2.2 --- Buffers --- p.31 / Chapter 4.2.3 --- Solutions --- p.32 / Chapter Chapter 5 --- Development of dorsal root ganglion cell preparation --- p.33 / Chapter 5.1 --- Introduction --- p.33 / Chapter 5.2 --- Methods --- p.34 / Chapter 5.2.1 --- Dissection of dorsal root ganglia --- p.34 / Chapter 5.2.2 --- Preparation of a single-cell suspension --- p.34 / Chapter 5.2.2.1 --- Effect of trimming dorsal root ganglia --- p.34 / Chapter 5.2.2.2 --- Enzymatic dissociation --- p.35 / Chapter 5.2.2.3 --- Mechanical dissociation --- p.36 / Chapter 5.2.3 --- Neuronal cell enrichment --- p.36 / Chapter 5.2.3.1 --- Differential adhesion --- p.36 / Chapter 5.2.3.2 --- BSA gradient --- p.37 / Chapter 5.2.3.3 --- Combination of BSA gradient and differential adhesion --- p.37 / Chapter 5.2.4 --- Cell counting --- p.37 / Chapter 5.2.5 --- Culture conditions --- p.38 / Chapter 5.2.6 --- Size distribution of DRG cells --- p.39 / Chapter 5.2.7 --- Immunocytochemistry --- p.39 / Chapter 5.3 --- Results and discussion --- p.40 / Chapter 5.3.1 --- Preparation of single-cell suspension --- p.40 / Chapter 5.3.2 --- Neuronal cell enrichment --- p.42 / Chapter 5.3.3 --- Size distribution of DRG cells --- p.32 / Chapter 5.3.4 --- Effects of mitotic inhibitors and NGF --- p.45 / Chapter 5.3.5 --- Immunocytochemistry --- p.48 / Chapter 5.4 --- Conclusions --- p.48 / Chapter Chapter 6 --- Methods --- p.53 / Chapter 6.1 --- Dorsal root ganglion cell preparation --- p.53 / Chapter 6.1.1 --- Preparation of tissue culture plates and coverslips --- p.54 / Chapter 6.1.2 --- Preparation of Pasteur pipettes --- p.54 / Chapter 6.2 --- Measurement of adenylate cyclase activity --- p.55 / Chapter 6.2.1 --- Introduction --- p.55 / Chapter 6.2.2 --- Preparation of columns --- p.55 / Chapter 6.2.3 --- Measurement of [3H]-cyclic AMP production --- p.56 / Chapter 6.2.4 --- Data analysis --- p.57 / Chapter 6.3 --- Measurement of phospholipase C activity --- p.58 / Chapter 6.3.1 --- Introduction --- p.58 / Chapter 6.3.2 --- Preparation of columns --- p.58 / Chapter 6.3.3 --- Measurement of [3H]-inositol phosphate production --- p.59 / Chapter 6.3.4 --- Data analysis --- p.60 / Chapter 6.4 --- Measurement of [Ca2+]i --- p.60 / Chapter 6.4.1 --- Introduction --- p.60 / Chapter 6.4.2 --- Preparations of cells --- p.61 / Chapter 6.4.3 --- Measurement of Fura-2 fluorescence --- p.62 / Chapter 6.5 --- Measurement of neuropeptides --- p.62 / Chapter 6.5.1 --- Introduction --- p.62 / Chapter 6.5.2 --- Preparation of cells --- p.63 / Chapter 6.5.3 --- CGRP assay --- p.64 / Chapter 6.5.4 --- Substance P assay --- p.64 / Chapter 6.5.5 --- Purification of samples using Sep-Pak cartridges --- p.65 / Chapter Chapter 7 --- Characterisation of prostacyclin receptors on adult rat dorsal root ganglion cells --- p.66 / Chapter 7.1 --- Stimulation of adenylate cyclase --- p.66 / Chapter 7.1.1 --- Introduction --- p.66 / Chapter 7.1.2 --- Agonist concentration-response curves --- p.67 / Chapter 7.1.3 --- Cross-desensitisation experiments --- p.72 / Chapter 7.1.4 --- Evidence for EP3-receptors --- p.77 / Chapter 7.1.5 --- G-protein coupling of the IP-receptor --- p.77 / Chapter 7.1.6 --- Discussion --- p.78 / Chapter 7.1.7 --- Conclusions --- p.82 / Chapter 7.2 --- Stimulation of phospholipase C --- p.82 / Chapter 7.2.1 --- Introduction --- p.82 / Chapter 7.2.2 --- Agonist concentration-response curves --- p.83 / Chapter 7.2.3 --- G-protein coupling --- p.83 / Chapter 7.2.4 --- Discussion and Conclusions --- p.84 / Chapter 7.3 --- Stimulation of changes in [Ca2+]i --- p.87 / Chapter 7.3.1 --- Introduction --- p.87 / Chapter 7.3.2 --- Preliminary results --- p.87 / Chapter 7.3.3 --- Discussion and conclusions --- p.89 / Chapter Chapter 8 --- Neuropeptide release by adult rat dorsal root ganglion cells --- p.90 / Chapter 8.1 --- Introduction --- p.90 / Chapter 8.2 --- Methods and Results --- p.91 / Chapter 8.3 --- Discussion --- p.91 / Chapter 8.4 --- Conclusions --- p.92 / Chapter Chapter 9 --- Regulation of prostacyclin receptors on adult rat DRG cells --- p.93 / Chapter 9.1 --- Introduction --- p.93 / Chapter 9.2 --- Contribution of non-neuronal cells --- p.93 / Chapter 9.3 --- Effect of DRG cell density --- p.94 / Chapter 9.4 --- Effect of indomethacin --- p.99 / Chapter 9.5 --- Contribution of endogenously-produced non-prostanoid ligands --- p.100 / Chapter 9.6 --- Effect of PKC activation --- p.102 / Chapter 9.7 --- Discussion --- p.104 / Chapter 9.8 --- Conclusions --- p.106 / Chapter Chapter 10 --- General Discussion and Conclusions --- p.107 / Chapter 10.1 --- Development of DRG cell preparation --- p.107 / Chapter 10.2 --- Effect of prostanoid mimetics on intracellular messengers --- p.108 / Chapter 10.3 --- Regulation of prostacyclin receptors --- p.109 / Chapter 10.4 --- Role of prostacyclin in pain modulation --- p.111 / References --- p.113
|
7 |
A study of prostacyclin receptors in the regulation of mitogen-activated protein kinases.January 2002 (has links)
Chu Kit Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 142-168). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgement --- p.iv / Abbreviations --- p.v / Publications Based on Work in this thesis --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- G protein-coupled receptors --- p.1 / Chapter 1.1.1 --- Introduction --- p.1 / Chapter 1.1.2 --- Heterotrimeric G proteins --- p.3 / Chapter 1.1.3 --- Second messenger systems --- p.4 / Chapter 1.1.4 --- Mechanism of GPCR activation --- p.6 / Chapter 1.2 --- Prostacyclin and its receptors --- p.9 / Chapter 1.2.1 --- General properties of prostacyclin --- p.9 / Chapter 1.2.1.1 --- Synthesis of prostacyclin --- p.9 / Chapter 1.2.1.2 --- Prostacyclin analogues --- p.10 / Chapter 1.2.2 --- Characterization of IP-receptors --- p.12 / Chapter 1.2.2.1 --- Distribution of IP-receptors --- p.12 / Chapter 1.2.2.2 --- Cloning of IP-receptors --- p.14 / Chapter 1.2.2.3 --- Structure of IP-receptors --- p.15 / Chapter 1.2.3 --- Coupling of IP-receptors to G proteins --- p.16 / Chapter 1.2.3.1 --- Interaction with Gs --- p.16 / Chapter 1.2.3.2 --- Interaction with Gq --- p.17 / Chapter 1.2.3.3 --- Interaction with Gi --- p.18 / Chapter 1.2.3.4 --- Interaction with PPARs --- p.20 / Chapter 1.2.4 --- Role of prostacyclin in mitogenesis/anti-mitogenesis --- p.20 / Chapter 1.3 --- Signal transduction network of MAPK family --- p.27 / Chapter 1.3.1 --- MAPK modules in mammalian cells --- p.29 / Chapter 1.3.1.1 --- Extracellular regulated kinase (ERK) cascade --- p.30 / Chapter 1.3.1.2 --- Stress-activated protein kinase (JNK and p38) cascades --- p.33 / Chapter 1.3.2 --- Activation ofERKl/2 through GPCRs --- p.35 / Chapter Chapter 2 --- Materials and solutions --- p.53 / Chapter 2.1 --- Materials --- p.53 / Chapter 2.2 --- "Culture media, buffer and solutions" --- p.58 / Chapter 2.2.1 --- Culture media --- p.58 / Chapter 2.2.2 --- Buffers --- p.59 / Chapter 2.2.3 --- Solutions --- p.62 / Chapter Chapter 3 --- Methods --- p.65 / Chapter 3.1 --- Maintenance of cell lines --- p.65 / Chapter 3.1.1 --- Chinese Hamster ovary (CHO) cells --- p.65 / Chapter 3.1.2 --- Human neuroblastoma (SK-N-SH) cells --- p.66 / Chapter 3.1.3 --- Rat/mouse neuroblastoma/glioma hybrid (NG108-15) cells --- p.66 / Chapter 3.2 --- Transient transfection of mammalian cells --- p.67 / Chapter 3.3 --- Measurement of ERK activity --- p.68 / Chapter 3.3.1 --- PathDetect® Elkl trans-Reporting System --- p.68 / Chapter 3.3.1.1 --- Introduction --- p.68 / Chapter 3.3.1.2 --- β-galactosidase assay --- p.72 / Chapter 3.3.1.3 --- Transient transfection of cells --- p.72 / Chapter 3.3.1.4 --- Cell assay --- p.73 / Chapter 3.3.1.5 --- Luciferase assay --- p.74 / Chapter 3.3.1.6 --- Micro β-gal assay --- p.74 / Chapter 3.3.1.7 --- Data analysis --- p.75 / Chapter 3.3.2 --- Western Blotting --- p.79 / Chapter 3.3.2.1 --- Introduction --- p.79 / Chapter 3.3.2.2 --- Transient transfection of cells --- p.79 / Chapter 3.3.2.3 --- Cell assay --- p.79 / Chapter 3.3.2.4 --- Protein electrophoresis and transfer --- p.80 / Chapter 3.3.2.5 --- Immunodetection --- p.80 / Chapter 3.4.1 --- Measurement of adenylyl cyclase activity --- p.83 / Chapter 3.4.1 --- wyo-[3H]-inositol labelling method --- p.83 / Chapter 3.4.1.1 --- Preparation of columns --- p.83 / Chapter 3.4.1.2 --- Incubation of cells --- p.84 / Chapter 3.4.1.3 --- Measurement of [3H]-cyclic AMP production --- p.84 / Chapter 3.4.1.4 --- Data analysis --- p.85 / Chapter 3.5 --- Measurement of phospholipase C activity --- p.85 / Chapter 3.5.1 --- wyo-[3H]-inositol labelling method --- p.85 / Chapter 3.5.1.1 --- Preparation of columns --- p.86 / Chapter 3.5.1.2 --- Incubation of cells --- p.86 / Chapter 3.5.1.3 --- Measurement of [3H]-inositol phosphate production --- p.87 / Chapter 3.5.1.4 --- Data analysis --- p.88 / Chapter Chapter 4 --- Results --- p.89 / Chapter 4.1 --- Validation of PathDetect® Elkl Trans-Reporting System --- p.89 / Chapter 4.1.1 --- Introduction --- p.89 / Chapter 4.1.2 --- Internal control --- p.89 / Chapter 4.1.3 --- Response to cicaprost and ATP --- p.91 / Chapter 4.1.4 --- Normalisation of ERK1/2 activity with transfection efficiency --- p.92 / Chapter 4.1.5 --- Cicaprost response in CHO cells in the absence of mIP- receptor --- p.93 / Chapter 4.1.6 --- Normalised luciferase activity reflecting ERK1/2 activation --- p.93 / Chapter 4.1.7 --- Conclusion --- p.95 / Chapter 4.2 --- Characterization of IP-receptors --- p.101 / Chapter 4.2.1 --- IP-receptor activation of adenylyl cyclase and phospholipase C --- p.101 / Chapter 4.2.2 --- IP-receptor activation ofERKl/2 in mIP-CHO cells --- p.102 / Chapter 4.2.2.1 --- PathDetect System --- p.102 / Chapter 4.2.2.2 --- Western Blotting --- p.103 / Chapter 4.2.2.3 --- Conclusion --- p.104 / Chapter 4.2.3 --- Role of the Gs-mediated pathway in cicaprost-stimulated ERK1/2 activation --- p.104 / Chapter 4.2.3.1 --- Role of cyclic AMP --- p.105 / Chapter 4.2.3.2 --- Role of protein kinase A --- p.106 / Chapter 4.2.4 --- Role of the Gq-mediated pathway in cicaprost-stimulated ERK1/2 activation --- p.106 / Chapter 4.2.4.1 --- Role of IP3 --- p.107 / Chapter 4.2.4.2 --- Role of protein kinase C --- p.108 / Chapter 4.2.4.3 --- Conclusion --- p.108 / Chapter 4.2.5 --- IP-receptor activation of ERKl/2 in hIP-CHO cells --- p.109 / Chapter 4.2.5.1 --- Activation ofERKl/2 in hIP-CHO cells --- p.109 / Chapter 4.2.5.2 --- Role of the Gq-mediated pathway in cicaprost- stimulated ERK 1/2 activation --- p.110 / Chapter 4.2.5.3 --- Role of the Gs-mediated pathway in cicaprost- stimulated ERK 1/2 activation --- p.111 / Chapter 4.2.5.4 --- Conclusions --- p.113 / Chapter 4.2.6 --- IP-receptor activation of ERX1/2 in neuroblastoma cells --- p.114 / Chapter 4.2.6.1 --- Rat/mouse neuroblastoma/glioma (NG108-15) cells --- p.114 / Chapter 4.2.6.2 --- Human neuroblastoma (SK-N-SH) cells --- p.115 / Chapter Chapter 5 --- General Discussion and Conclusions --- p.137 / References --- p.142
|
8 |
Efeito regulador da PGE2 na produção de TNF-α e IL-17 na atividade microbicida na leishmaniose canina. /Venturin, Gabriela Lovizutto. January 2019 (has links)
Orientador: Valéria Marçal Felix de Lima / Resumo: A leishmaniose canina (CanL) é causada pelo parasito intracelular Leishmania infantum. Devido ao alto parasitismo na pele o cão é considerado o principal reservatório urbano da L. Infantum. A prostaglandina-E2 (PGE2) possui propriedades reguladoras potentes do sistema imunológico e pode se ligar aos receptores EP1, EP2 e EP4 que geram ativação celular ou EP3 que gera inibição de resposta celular. Na CanL o papel regulador da PGE2 ainda não foi estudado, por isso, os parâmetros foram avaliados em cultura de leucócitos esplênicos de cães com CanL. Avaliando o nível de PGE2, seus receptores, e seu efeito modulador sobre a PGE2 na atividade da arginase, NO2, citocinas IL-10, IL-17 e TNF-α e carga. Para isso utilizamos seus agonistas, antagonista e inibidor. Nossos resultados mostraram que a expressão do receptor EP2 diminuiu nos leucócitos esplênicos dos cães com CanL quando comparado aos cães saudáveis. Observamos que o NO2 diminuiu quando tratados com os agonistas dos receptores de PGE2 (EP1/EP2/EP3), antagonista dos receptores de PGE2 (AH-6809) e inibidor de COX-2 (NS-398). A concentração das citocinas TNF-α e a IL-17 diminuíram quando tratadas com agonista do receptor de PGE2 (EP2), e quando estimuladas com a PGE2. A carga parasitária diminuiu na cultura de leucócitos esplênicos de cães com CanL estimulados com PGE2. Concluímos que a infecção por Leishmania modula os receptores de PGE2 em cães, e que a ligação da PGE2 aos receptores pode ativar a capacidade microbicida das cé... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
|
9 |
Prostanoid receptors on rat peritoneal mast cells. / CUHK electronic theses & dissertations collectionJanuary 1999 (has links)
by Chung Lap Chan. / "March 1999." / Thesis (Ph.D.)--Chinese University of Hong kong, 1999. / Includes bibliographical references (p. 270-307). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
10 |
Investigation of mechanisms underlying synergism between prostanoid EP₃ receptor agonists and strong vasoconstrictor agents.January 2003 (has links)
Le Gengyun. / Thesis submitted in: December 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 161-182). / Abstracts in English and Chinese. / Abstract --- p.i / Abbreviations --- p.v / Acknowledgements --- p.vii / Publications --- p.viii / Table of Contents --- p.ix / Chapter Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1. --- Vasoconstrictors --- p.1 / Chapter 1.1 --- An overview of vascular smooth muscle contraction --- p.1 / Chapter 1.2 --- Strong and weak vasoconstrictors --- p.5 / Chapter 1.2.1 --- Mechanisms involved in TP receptor vasoconstriction --- p.6 / Chapter 1.2.1.1 --- Brief introduction to the TP receptor --- p.6 / Chapter 1.2.1.2 --- Second messenger systems --- p.6 / Chapter 1.2.1.3 --- G-protein-linked pathways --- p.7 / Chapter 1.2.1.3.1 --- G proteins --- p.7 / Chapter 1.2.1.3.2 --- G-protein-linked TP receptor signal transduction --- p.8 / Chapter 1.2.2 --- Mechanisms involved in α1-adrenoceptor vasoconstriction --- p.8 / Chapter 1.2.2.1 --- Brief introduction to the α1-adrenoceptor --- p.8 / Chapter 1.2.2.2 --- Second messenger systems --- p.9 / Chapter 1.2.2.3 --- G-protein-linked α-adrenoceptor signal transduction --- p.9 / Chapter 1.3 --- Prostanoid EP3 receptor agonists (weak vasoconstrictors) --- p.10 / Chapter 1.3.1 --- Prostanoids --- p.10 / Chapter 1.3.1.1 --- Biochemical characteristics of prostanoids --- p.10 / Chapter 1.3.1.1.1 --- Biosynthesis of prostanoids --- p.10 / Chapter 1.3.1.1.2 --- Metabolism of prostanoids --- p.11 / Chapter 1.3.1.2 --- Prostanoid receptors --- p.13 / Chapter 1.3.1.2.1 --- Structures --- p.13 / Chapter 1.3.1.2.2 --- Current Status of Classification --- p.14 / Chapter 1.3.1.2.3 --- Signal transduction --- p.16 / Chapter 1.3.1.2.4 --- Distribution --- p.18 / Chapter 1.3.1.2.5 --- Physiological functions --- p.18 / Chapter 2. --- Interactions between vasoconstrictors --- p.19 / Chapter 2.1 --- Cross-talk between G-protein-coupled receptors --- p.19 / Chapter 2.1.1 --- Cross-talk between different receptor families --- p.19 / Chapter 2.1.2 --- Cross-talk between subtypes of the same receptor family --- p.21 / Chapter 2.1.3 --- Cross-talk at the effector level --- p.23 / Chapter 2.2 --- Proposed pathways involved in synergistic interactions --- p.24 / Chapter 2.2.1 --- Rho and Rho-associated kinase --- p.24 / Chapter 2.2.1.1 --- Rho family and its identification --- p.24 / Chapter 2.2.1.2 --- Mechanism(s) of Rho contribution in vasoconstriction --- p.25 / Chapter 2.2.1.3 --- Interactions between Rho and other pathways --- p.26 / Chapter 2.2.2 --- Receptor tyrosine kinases --- p.29 / Chapter 2.2.2.1 --- RTK family --- p.29 / Chapter 2.2.2.2 --- Activation of RTKs --- p.29 / Chapter 2.2.2.3 --- Mechanism(s) of RTK contribution in vasoconstriction --- p.30 / Chapter 2.2.2.4 --- Interactions between RTKs and MAPKs --- p.31 / Chapter 2.2.3 --- Mitogen-activated protein kinase --- p.34 / Chapter 2.2.3.1 --- p38 MAPK --- p.35 / Chapter 2.2.3.2 --- JNK MAPK --- p.35 / Chapter 2.2.3.3 --- ERK MAPK --- p.36 / Chapter 2.2.3.4 --- Interactions between MAPK and GPCRs --- p.37 / Chapter Chapter 2 --- FORCE MEASUREMENT SYSTEM --- p.41 / Chapter 1. --- Introduction --- p.41 / Chapter 2. --- Materials --- p.41 / Chapter 2.1 --- Drugs --- p.41 / Chapter 2.2 --- Chemicals --- p.41 / Chapter 2.3 --- Solutions --- p.46 / Chapter 3. --- Methods --- p.46 / Chapter 3.1 --- Isolated smooth muscle preparations and organ bath set-up --- p.46 / Chapter 3.2 --- Data analysis --- p.47 / Chapter Chapter 3 --- VASOCONSTRICTORS AND THEIR INTERACTIONS --- p.48 / Chapter 1. --- Introduction --- p.48 / Chapter 2. --- Materials and Methods --- p.48 / Chapter 2.1 --- Materials --- p.48 / Chapter 2.2 --- Methods --- p.51 / Chapter 2.2.1 --- Isolated tissue preparations --- p.51 / Chapter 2.2.2 --- Experimental protocols --- p.51 / Chapter 2.2.3 --- Statistical analysis --- p.52 / Chapter 3. --- Results --- p.55 / Chapter 3.1 --- Typical vasoconstrictor profiles of agonists --- p.55 / Chapter 3.1.1 --- Sulprostone contraction --- p.55 / Chapter 3.1.2 --- U-46619 contraction --- p.55 / Chapter 3.1.3 --- Phenylephrine contraction --- p.56 / Chapter 3.2 --- Synergistic interactions between sulprostone and strong vasoconstrictors --- p.58 / Chapter 3.2.1 --- Enhancement of U-46619 response by sulprostone --- p.58 / Chapter 3.2.2 --- Enhancement of phenylephrine response by sulprostone --- p.58 / Chapter 3.2.3 --- Enhancement of sulprostone response by phenylephrine --- p.58 / Chapter Chapter 4 --- INVESTIGATION OF PATHWAYS INVOLVED IN EP3 AGONIST- INDUCED VASOCONSTRICTION --- p.64 / Chapter 1. --- Introduction --- p.64 / Chapter 2. --- Materials and methods --- p.65 / Chapter 2.1 --- Materials --- p.65 / Chapter 2.2 --- Methods --- p.65 / Chapter 2.2.1 --- Isolated tissue preparations --- p.65 / Chapter 2.2.2 --- Experimental protocols --- p.65 / Chapter 2.2.3 --- Statistical analysis --- p.69 / Chapter 3. --- Results --- p.70 / Chapter 3.1 --- Effects of tyrosine kinase inhibitors --- p.70 / Chapter 3.2 --- Effects of MAPK inhibitors --- p.82 / Chapter 3.2.1 --- Effects of MAPK inhibitors on U-46619 responses --- p.82 / Chapter 3.2.2 --- Effects of MAPK inhibitors on sulprostone responses --- p.91 / Chapter 3.2.3 --- Effects of MAPK inhibitors on phenylephrine responses --- p.100 / Chapter 3.3 --- Effects of Rho-kinase inhibitors --- p.104 / Chapter Chapter 5 --- TRANSFECTED CELL LINE SYSTEM --- p.111 / Chapter 1. --- Introduction --- p.111 / Chapter 2. --- Materials and methods --- p.114 / Chapter 2.1 --- Materials --- p.114 / Chapter 2.1.1 --- Plasmids and vectors --- p.114 / Chapter 2.1.2 --- Radioactive agents --- p.114 / Chapter 2.1.3 --- Chemicals --- p.114 / Chapter 2.1.4 --- Restriction digest enzymes --- p.115 / Chapter 2.1.5 --- "Culture media, buffers and solutions" --- p.115 / Chapter 2.1.5.1 --- Culture media / Chapter 2.1.5.2 --- Buffers and solutions --- p.115 / Chapter 2.2 --- Methods --- p.116 / Chapter 2.2.1 --- Transfected cell lines --- p.116 / Chapter 2.2.1.1 --- Subcloning of hEP3-1 receptor and hTP receptor cDNA --- p.116 / Chapter 2.2.1.1.1 --- Plasmid recovery / Chapter 2.2.1.1.2 --- Preparation of competent cells --- p.116 / Chapter 2.2.1.1.3 --- Transformation of competent cells --- p.117 / Chapter 2.2.1.1.4 --- Extraction of DNA by QIAGEN Plasmid Mini Kit --- p.117 / Chapter 2.2.1.1.5 --- Restriction enzymes digestion and dephosphorylation --- p.117 / Chapter 2.2.1.1.6 --- DNA recovery and ligation / Chapter 2.2.1.1.7 --- Positive recombinant DNA selection --- p.119 / Chapter 2.2.1.2 --- Cell culture --- p.119 / Chapter 2.2.1.3 --- Transient transfection of CHO cells --- p.121 / Chapter 2.2.1.4 --- Mesurement of adenylate cyclase activity --- p.121 / Chapter 2.2.1.4.1 --- Preparation of columns --- p.121 / Chapter 2.2.1.4.2 --- [3H]-cAMP assays --- p.122 / Chapter 2.2.1.5 --- Measurement of phospholipase C activity --- p.122 / Chapter 2.2.1.5.1 --- Preparation of columns --- p.123 / Chapter 2.2.1.5.2 --- [3H]-inositol phosphate assay --- p.123 / Chapter 2.2.2 --- Data analysis --- p.124 / Chapter 3. --- Results --- p.125 / Chapter 3.1 --- Subcloning of hEP3-1and hTPα receptor cDNA into expression vectors --- p.125 / Chapter 3.2 --- Measurement of cAMP and IP production in transfected CHO cells --- p.133 / Chapter 3.2.1 --- Effect of varying receptor cDNA concentration on agonist-stimulated [3H]-cAMP and [3H]-IP production in transiently transfected CHO cells --- p.133 / Chapter 3.2.2 --- Effect of agonists on intracellular [3H]-IP or [3H]-cAMP productionin CHO cells transfected with hTPα or hEP3-1 --- p.133 / Chapter 3.3 --- Summary --- p.134 / Chapter Chapter 6 --- GENERAL DISCUSSION AND CONCLUSIONS --- p.137 / Chapter 1. --- Vasoconstrictors and their interactions --- p.137 / Chapter 1.1 --- Vasoconstrictors --- p.137 / Chapter 1.2 --- Synergism --- p.138 / Chapter 2. --- Investigation of possible pathways --- p.140 / Chapter 2.1 --- Rho-associated kinase --- p.140 / Chapter 2.2 --- Receptor tyrosine kinase --- p.147 / Chapter 2.3 --- Mitogen-activated protein kinase (MAPK) --- p.151 / Chapter 3. --- Effect of vehicles --- p.155 / Chapter 4. --- Biochemical studies in transfected CHO cells --- p.157 / Chapter 5. --- Conclusions --- p.158 / Appendix I --- p.159 / Buffers and Solutions used in transfected system --- p.159 / Chapter 1. --- Buffers --- p.159 / Chapter 2. --- Solutions --- p.159 / REFERENCES --- p.161
|
Page generated in 0.0887 seconds