• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Změny ve složení a lokalizaci gangliosidů u cholestázy v návaznosti na markery signalizující patologické procesy v jaterních buňkách. / Changes in the composition and localization of gangliosides in cholestasis associated with other markers of pathological processes in hepatocytes.

Petr, Tomáš January 2016 (has links)
This thesis is focused on the study of glycosphingolipids in the rat liver in different types of cholestasis and the effect of oxidative stress on changes in the composition and localization of gangliosides. First, it was necessary to optimize the immunochemical detection of glycosphingolipids. GM1 ganglioside was selected as a representative of a large glycolipid family. We found that minimum water content in the fixing solution was a key condition for fixation of histological sections. Optimized method of GM1 detection was subsequently used in in vivo experiments. We have demonstrated that estrogen-induced cholestasis characterized by high concentrations of bile acids and increased oxidative stress caused changes in the synthesis and distribution of liver gangliosides. HMOX induction is associated with a reduction in oxidative stress level and accompanied by normalization in GSL content. In experiments with obstructive cholestasis, we found that changes in the distribution and synthesis of gangliosides were not strictly specific to a particular type of cholestasis. We assume that it represents a general mechanism of hepatoprotection. We also confirmed the important role of bilirubin, product of HMOX reaction, in protection of hepatocytes against oxidative damage caused by high concentrations of...
2

Změny ve složení a lokalizaci gangliosidů u cholestázy v návaznosti na markery signalizující patologické procesy v jaterních buňkách. / Changes in the composition and localization of gangliosides in cholestasis associated with other markers of pathological processes in hepatocytes.

Petr, Tomáš January 2016 (has links)
This thesis is focused on the study of glycosphingolipids in the rat liver in different types of cholestasis and the effect of oxidative stress on changes in the composition and localization of gangliosides. First, it was necessary to optimize the immunochemical detection of glycosphingolipids. GM1 ganglioside was selected as a representative of a large glycolipid family. We found that minimum water content in the fixing solution was a key condition for fixation of histological sections. Optimized method of GM1 detection was subsequently used in in vivo experiments. We have demonstrated that estrogen-induced cholestasis characterized by high concentrations of bile acids and increased oxidative stress caused changes in the synthesis and distribution of liver gangliosides. HMOX induction is associated with a reduction in oxidative stress level and accompanied by normalization in GSL content. In experiments with obstructive cholestasis, we found that changes in the distribution and synthesis of gangliosides were not strictly specific to a particular type of cholestasis. We assume that it represents a general mechanism of hepatoprotection. We also confirmed the important role of bilirubin, product of HMOX reaction, in protection of hepatocytes against oxidative damage caused by high concentrations of...
3

Die Bedeutung von GD3-7-Aldehyd als Apoptosemediator und Oberflächenantigen

Röber, Nadja 25 July 2017 (has links) (PDF)
Glycosphingolipide sind eine Gruppe von amphiphatischen Membran- und Strukturlipiden, welche aus einem Molekül des Aminoalkohols Sphingosin oder einem seiner Derivate, einer langkettigen Fettsäure und einem Kohlenhydratrest als polare Kopfgruppe zusammengesetzt sind. Eine Subgruppe dieser Substanzen stellen die Ganglioside dar, welche durch das Vorkommen von Sialinsäure als Bestandteil ihrer Glykankette charakterisiert sind. Das Gangliosid GD3 ist als tumorassoziiertes Antigen auf der Oberfläche neuroektodermaler Tumore sowie als proapoptotisch wirkender Lipidmediator beschrieben. Seine biologischen Funktionen und der genaue Wirkmechanismus im Rahmen der Apoptose sind bisher aber unbekannt. Es gibt jedoch Hinweise, dass nicht GD3 selbst, sondern sein oxidiertes Derivat das eigentliche Effektormolekül darstellt. Eine minimale Veränderung des GD3-Moleküls, die 9-O-Acetylierung der Seitenkette der terminalen Sialinsäure, hebt die proapoptotische Wirkung des Gangliosids auf. Tumorzellen, in denen das Enzym 9-O-Acetyltransferase aktiv ist, können der Apoptose auf diese Weise entgehen. Das Anliegen dieser Arbeit war es, Vorkommen und Funktion des bis dahin nur artifiziell generierten oxidierten GD3-Derivates zu untersuchen. Es war zu analysieren, welche Auswirkungen oxidiertes GD3 auf das Überleben von GD3-resistenten Tumorzellen hat. Es sollte geprüft werden, ob GD3-7-Aldehyd in Primärzellen und Geweben auftritt. Dabei war zu klären, ob das Molekül unter Bedingungen des oxidativen Stresses entstehen und auf der Zelloberfläche oder intrazellulär induziert werden kann. Daraus folgernd sollte betrachtet werden, welche neuen immunologischen Therapieansätze zur Behandlung resistenter Tumore unter Nutzung von GD3-7-Aldehyd möglich wären. Voraussetzungen für die Experimente dieser Arbeit und für nachfolgende Forschungsfragen sind zuverlässige Nachweismöglichkeiten der Metabolite GD3, 9 O-acetyl-GD3 und GD3-7-Aldehyd. Während für den Nachweis von GD3 und 9 O acetyl-GD3 bereits monoklonale Antikörper zur Verfügung standen, war für die Detektion von GD3-7-Aldehyd im Rahmen dieser Arbeit erstmals ein monoklonaler Antikörper gegen ein oxidiertes Gangliosid zu generieren und zu charakterisieren. Für die Selektion antikörperproduzierender Zellen musste dafür zunächst eine neue Screeningmethode etabliert werden. Für die Überprüfung des Bindungsverhaltens der gangliosidspezifischen Antikörper und für die Durchführung der Inkubationsversuche waren die Ganglioside GD3 und 9-O-acetyl-GD3 über mehrere Chromatographieschritte aus lyophilisierter Buttermilch zu isolieren und das oxidierte Derivat herzustellen. Dabei wurde erstmals die Reinigung von GD3-7-Aldehyd mit der HPLC durchgeführt. Der im Rahmen dieser Arbeit generierte monoklonale Antikörper 10C6 gehört der Immunglobulin-Subklasse IgG2a an und bindet an die oxidierte Form des Gangliosids GD3. Das von 10C6 erkannte Antigen ist eine Glycankette der Struktur Neu5Ac-8Neu5Ac-3Gal mit oxidierter terminaler Sialinsäure. Der Antikörper reagiert nicht mit reduzierten oder 9-O-acetylierten Gangliosidvarianten und weist eine höhere Sensitivität auf als die etablierten Antikörper zum Nachweis der beiden anderen GD3-Derivate. In der Arbeit wurde in vitro gezeigt, dass die oxidative Modifikation von GD3 zu GD3 7-Aldehyd unter Bedingungen des oxidativen Stresses entstehen kann. In der GD3-resistenten Zelllinie Molt-4 induziert die Substanz Apoptose. GD3-7-Aldehyd kommt daher als proapoptotisches Effektormolekül in Frage. Das von 10C6 erkannte Antigen kommt auf der Oberfläche von Monozyten einzelner Spender vor. Außerdem kann es auf der Oberfläche eines Teils der Blasten bei akuter myeloischer Leukämie gefunden werden. Andere Leukozyten des peripheren Blutes tragen diese Struktur nicht. GD3-7-Aldehyd kommt in den Tumorzelllinien HEp-2, HL60 und T47D vor. In Gewebeschnitten von humanem Mammakarzinom sowie fötaler Milz und fötalem Darm von Primaten fanden sich Hinweise auf Strukturen mit oxidativ modifizierter Sialinsäure, in Geweben adulter Primaten wurden diese nicht gefunden. Auf der Oberfläche von Melanomzelllinien wie Ma-Mel-11, Ma-Mel-95 und SK-Mel-23 vorkommendes GD3 kann durch Natriumperjodatbehandlung zu GD3-7-Aldehyd oxidiert werden. Durch UV-Bestrahlung kann auf der Oberfläche von HEp-2- und SK-Mel-23-Zellen eine mit dem Antikörper 10C6 detektierbare Struktur induziert werden. HL60-Zellen lassen sich durch extern zugeführten GD3-7-Aldehyd dekorieren, es bleibt auf ihrer Oberfläche bis zu 48 Stunden nachweisbar. Für einen immunologischen Tumortherapieansatz könnten sowohl das geringe Vorkommen des Antigens in gesunden Geweben als auch die Induzierbarkeit auf der Oberfläche bestimmter Tumorzellen nach lokaler Vorbehandlung sowie die Toxizität der Substanz von Nutzen sein. Ein passender spezifischer Antikörper liegt nun vor. Die im Rahmen dieser Arbeit etablierten Detektionssysteme können für weitere Untersuchungen auf dem Gebiet der Glycolipidforschung eingesetzt werden. / Glycosphingolipids are a group of amphiphatic membrane and structure lipids consisting of one molecule of the aminoalcohol Sphingosin or one of its derivatives, a long chain fatty acid, and a carbohydrate moiety as polar side chain. One subgroup of these substances are gangliosides, which are characterized by sialic acid as a component of their glycan chain. The ganglioside GD3 is described as tumor associated antigen on the surface of neuroectodermal tumors and as proapoptotic lipid mediator. Its biological functions as well as its mode of operation in the context of apoptosis still remain unclear. There are hints, that not GD3 itself, but an oxidized derivative represents the actual effector molecule. A minimal change in the GD3 molecule, the 9-O-acetylation of the side chain of the terminal sialic acid, abolishes the proapoptotic effect completely. Tumor cells with activity of the enzyme 9-O-acetyltransferase can escape from apoptosis like that. The request of this work was to investigate the occurrence and function of this so far solely artificially generated oxidized GD3 derivative. The impact of oxidized GD3 on the survival of GD3-resistant tumor cells had to be analyzed. It had to be examined, whether GD3-7-aldehyde occurs in primary cells and tissues. Withal it was to clarify, if the molecule occurs under conditions of oxidative stress and if it can be induced on the surface of cells or intracellularly. Following that, it was to contemplate which novel approaches of immunological therapies for the treatment of resistant tumors could be possible under the use of GD3-7-aldehyde. Prerequisite to all experiments of this work and for following research are reliable detection methods of the metabolites GD3, and GD3-7-aldehyde. Whereas for the detection of GD3 and 9-O-acetyl-GD3 monoclonal antibodies were already existing, for the detection of GD3-7-aldehyde a novel monoclonal antibody directed against an oxidized ganglioside had to be generated for the first time and had to be characterized. For the selection of antibody producing cells, a new screening method had to be established. For the examination of the binding behavior of the ganglioside specific antibodies and for the performance of the incubation assays the gangliosides GD3 and 9-O-acetyl-GD3 had to be isolated from lyophilized bovine buttermilk via several chromatography steps and the oxidized derivative had to be produced. In doing so, GD3-7-al was purified by HPLC for the first time. The monoclonal antibody 10C6 generated in the framework of this study is member of immunoglobulin subclass IgG2a and binds to the oxidized form of the ganglioside GD3. The antigen detected by 10C6 is a glycan chain with structure Neu5Ac-8Neu5Ac-3Gal with oxidized terminal sialic acid. The antibody does not react with reduced or 9-O-acetylated forms of the ganglioside GD3 and possesses a higher sensitivity than the antibodies, established for the detection of both other GD3 derivatives. In this work it is shown in vitro, that the oxidative modification of GD3 to GD3-7-aldehyde can arise under conditions of oxidative stress. In GD3-resistant Molt-4-cells this substance induces apoptosis. Therefore GD3-7-aldehyde comes into consideration to be a proapoptotic effector molecule. The antigen detected by 10C6 occurs on the surface of monocytes of particular donors. Further, it can be found on the surface of a portion of the blasts of acute myeloic leukemia. Other leucocytes of the peripheral blood do not show this structure. GD3-7-aldehyde occurs in tumor cell lines HEp-2, HL60, and T47D. Hints for the existence of structures with oxidatively modified sialic acid were found in tissue slides of human mamma carcinoma and fetal gut. In tissues of adult primates this was not the case. On the surface of melanoma cell lines like Ma-Mel-11, Ma-Mel-95, and SK-Mel-23, existing GD3 can be converted into GD3-7-aldehyde by sodium periodate treatment. UV radiation can induce a structure detectable by 10C6 on the surface of HEp-2- and SK-Mel-23-cells. HL60-cells can be decorated by externally administered GD3-7-aldehyde. It is detectable on their surface for up to 48 hours. For an immunological approach of tumor therapy, the sparsely incidence of this antigen in healthy tissues as well as the inducibility on the surface of distinct tumor cells after pretreatment and the toxicity of this substance could be advantageous. A fitting antibody is now available. The detection methods established in the context of this work can be applied for further investigations in glycolipid research.
4

Development of a high-throughput shotgun-mass spectrometry method for qualitative and quantitative analysis of major mammalian brain gangliosides

Spiegel, Christopher 07 October 2020 (has links)
The goal of this thesis was to develop a high-throughput shotgun-MS lipidomics method to qualitatively and quantitively analyze the major mammalian brain ganglioside classes: GM1, GD1, GT1 and GQ1. As a starting point for the method to be developed, a modified ganglioside extraction method from Svennerholm and Ladisch was used (Svennerholm and Fredman, 1980; Ladisch and Gillard, 1985). The efficiencies and the impact of different extraction procedures to the overall performance were evaluated with a software called OptiVal™. The evaluation showed that the most important steps of the protocol are the salt concentration of the water phase during the 2-phase extraction, and 10 mM NaCl yielded the best sensitivity. Also, the number of washing steps with water during reverse solid phase extraction using C18 resin has a significant effect. The next step was to find suitable standards for quantification of the individual ganglioside classes. Since deuterated and alike ganglioside standards were commercially not available, we initially used a deuterated PE standard with limited success. A collaboration with the Ludger Johannes lab provided us with modified C17-ganglioside standards. The term “modified” describes the enzymatic exchange of the fatty acid in the hydrophobic tail by a 17-carbon atom long fatty acid. Since odd numbered fatty acids occur very rarely in nature, it is possible to use the measured intensity of the modified ceramide headgroup of 35:1 (Sphingosine C18:1 + Fatty Acid C17:0) to quantify natural gangliosides. Ideally, we would need to have a fitting modified C17-ganglioside standard for each class to be quantified. Since first only GM1 as a modified standard was available, it was necessary to determine response factors (RFs) for the ganglioside classes GD1, GT1 and GQ1. RFs were assessed empirically by titrating a variety of equimolar concentrations of the modified C17-GM1 standard versus wildtype standards of the other ganglioside classes. After establishment of the RFs it was possible to determine the limits of detection (LOD) and quantification (LOQ) for the ganglioside classes GD1, GT1 and GQ1 - with regard to the modified C17-GM1 standard. When the modified C17-standards for GD1 and GT1 became available, I was able to find out whether the correct internal standards are superior to the proxy method via response factors. The results clearly showed that the use of a correct class standards is preferable. For GQ1 no modified C17-standard was obtainable, therefore this class still has to be quantified via RFs. Experiments showed that the modified C17-GT1 standard is best suited for that. Another major goal was to integrate the ganglioside method into the general lipid analysis workflow of the high-throughput shotgun mass spectrometry platform that we were using. To achieve these goals adjustments on the evaluated (=old) protocol had to be done. These adjustments included changes in the extraction steps from the Svennerholm & Ladisch more into the direction of a Bligh & Dyer based extraction method. This meant abandoning the 2-phase extraction step as well as the chloroform/methanol/water (C/M/W) 4:8:3 extraction, in favor of a C/M 10:1 followed by a C/M 2:1 extraction of 150 mM ammonium-bicarbonate water solution. The goal behind this was to enable a combination of the global lipidome extraction (Surma et al., 2015) with the ganglioside extraction. Another important improvement was scaling up the extraction process. The use of standard single solid phase extraction (SPE) cartridges was limiting the extraction throughput to only 24 samples at a time, therefore the single SPE cartridges were replaced with the 96-well SPE SOLA™ plates. To process the SOLA™ plates it was necessary to establish the usage of a vacuum manifold. Combined, these changes lowered the overall process time of the protocol from nearly two working days to one working day, without significant loss of sensitivity regarding the measured sample concentrations. This was assessed by performing the mouse brain tissue titration experiment, with all three modified C17-ganglioside class standards GM1, GD1 and GT1. Finally, the established method was applied to investigate the difference in ganglioside levels in the cerebellum compared to the brain hemispheres in mice of different age. First the C/M 10:1 and 2:1 extraction was done for the analysis of all non-ganglioside lipids in the sample. The leftover water phase was then loaded onto the SOLA™ plates and processed with the new protocol. The results matched the given goals - to establish a protocol to measure and quantify the four major brain ganglioside classes in combination with the global lipidomics in a high-throughput manner - and thus were a success. To the best of our knowledge, this was the first time such a broad lipidomic measurement has been performed, hence no other studies exist to which the outcome could be compared.
5

Die Bedeutung von GD3-7-Aldehyd als Apoptosemediator und Oberflächenantigen

Röber, Nadja 13 June 2017 (has links)
Glycosphingolipide sind eine Gruppe von amphiphatischen Membran- und Strukturlipiden, welche aus einem Molekül des Aminoalkohols Sphingosin oder einem seiner Derivate, einer langkettigen Fettsäure und einem Kohlenhydratrest als polare Kopfgruppe zusammengesetzt sind. Eine Subgruppe dieser Substanzen stellen die Ganglioside dar, welche durch das Vorkommen von Sialinsäure als Bestandteil ihrer Glykankette charakterisiert sind. Das Gangliosid GD3 ist als tumorassoziiertes Antigen auf der Oberfläche neuroektodermaler Tumore sowie als proapoptotisch wirkender Lipidmediator beschrieben. Seine biologischen Funktionen und der genaue Wirkmechanismus im Rahmen der Apoptose sind bisher aber unbekannt. Es gibt jedoch Hinweise, dass nicht GD3 selbst, sondern sein oxidiertes Derivat das eigentliche Effektormolekül darstellt. Eine minimale Veränderung des GD3-Moleküls, die 9-O-Acetylierung der Seitenkette der terminalen Sialinsäure, hebt die proapoptotische Wirkung des Gangliosids auf. Tumorzellen, in denen das Enzym 9-O-Acetyltransferase aktiv ist, können der Apoptose auf diese Weise entgehen. Das Anliegen dieser Arbeit war es, Vorkommen und Funktion des bis dahin nur artifiziell generierten oxidierten GD3-Derivates zu untersuchen. Es war zu analysieren, welche Auswirkungen oxidiertes GD3 auf das Überleben von GD3-resistenten Tumorzellen hat. Es sollte geprüft werden, ob GD3-7-Aldehyd in Primärzellen und Geweben auftritt. Dabei war zu klären, ob das Molekül unter Bedingungen des oxidativen Stresses entstehen und auf der Zelloberfläche oder intrazellulär induziert werden kann. Daraus folgernd sollte betrachtet werden, welche neuen immunologischen Therapieansätze zur Behandlung resistenter Tumore unter Nutzung von GD3-7-Aldehyd möglich wären. Voraussetzungen für die Experimente dieser Arbeit und für nachfolgende Forschungsfragen sind zuverlässige Nachweismöglichkeiten der Metabolite GD3, 9 O-acetyl-GD3 und GD3-7-Aldehyd. Während für den Nachweis von GD3 und 9 O acetyl-GD3 bereits monoklonale Antikörper zur Verfügung standen, war für die Detektion von GD3-7-Aldehyd im Rahmen dieser Arbeit erstmals ein monoklonaler Antikörper gegen ein oxidiertes Gangliosid zu generieren und zu charakterisieren. Für die Selektion antikörperproduzierender Zellen musste dafür zunächst eine neue Screeningmethode etabliert werden. Für die Überprüfung des Bindungsverhaltens der gangliosidspezifischen Antikörper und für die Durchführung der Inkubationsversuche waren die Ganglioside GD3 und 9-O-acetyl-GD3 über mehrere Chromatographieschritte aus lyophilisierter Buttermilch zu isolieren und das oxidierte Derivat herzustellen. Dabei wurde erstmals die Reinigung von GD3-7-Aldehyd mit der HPLC durchgeführt. Der im Rahmen dieser Arbeit generierte monoklonale Antikörper 10C6 gehört der Immunglobulin-Subklasse IgG2a an und bindet an die oxidierte Form des Gangliosids GD3. Das von 10C6 erkannte Antigen ist eine Glycankette der Struktur Neu5Ac-8Neu5Ac-3Gal mit oxidierter terminaler Sialinsäure. Der Antikörper reagiert nicht mit reduzierten oder 9-O-acetylierten Gangliosidvarianten und weist eine höhere Sensitivität auf als die etablierten Antikörper zum Nachweis der beiden anderen GD3-Derivate. In der Arbeit wurde in vitro gezeigt, dass die oxidative Modifikation von GD3 zu GD3 7-Aldehyd unter Bedingungen des oxidativen Stresses entstehen kann. In der GD3-resistenten Zelllinie Molt-4 induziert die Substanz Apoptose. GD3-7-Aldehyd kommt daher als proapoptotisches Effektormolekül in Frage. Das von 10C6 erkannte Antigen kommt auf der Oberfläche von Monozyten einzelner Spender vor. Außerdem kann es auf der Oberfläche eines Teils der Blasten bei akuter myeloischer Leukämie gefunden werden. Andere Leukozyten des peripheren Blutes tragen diese Struktur nicht. GD3-7-Aldehyd kommt in den Tumorzelllinien HEp-2, HL60 und T47D vor. In Gewebeschnitten von humanem Mammakarzinom sowie fötaler Milz und fötalem Darm von Primaten fanden sich Hinweise auf Strukturen mit oxidativ modifizierter Sialinsäure, in Geweben adulter Primaten wurden diese nicht gefunden. Auf der Oberfläche von Melanomzelllinien wie Ma-Mel-11, Ma-Mel-95 und SK-Mel-23 vorkommendes GD3 kann durch Natriumperjodatbehandlung zu GD3-7-Aldehyd oxidiert werden. Durch UV-Bestrahlung kann auf der Oberfläche von HEp-2- und SK-Mel-23-Zellen eine mit dem Antikörper 10C6 detektierbare Struktur induziert werden. HL60-Zellen lassen sich durch extern zugeführten GD3-7-Aldehyd dekorieren, es bleibt auf ihrer Oberfläche bis zu 48 Stunden nachweisbar. Für einen immunologischen Tumortherapieansatz könnten sowohl das geringe Vorkommen des Antigens in gesunden Geweben als auch die Induzierbarkeit auf der Oberfläche bestimmter Tumorzellen nach lokaler Vorbehandlung sowie die Toxizität der Substanz von Nutzen sein. Ein passender spezifischer Antikörper liegt nun vor. Die im Rahmen dieser Arbeit etablierten Detektionssysteme können für weitere Untersuchungen auf dem Gebiet der Glycolipidforschung eingesetzt werden.:1 EINLEITUNG 1 1.1 Sphingolipide, Glycosphingolipide und Ganglioside 1 1.1.1 Biosynthese und Transport der Ganglioside 5 1.1.2 Biologische Funktionen und pathophysiologische Bedeutung der Ganglioside 10 1.2 Sialinsäuren 12 1.3 Das Disialogangliosid GD3 16 1.3.1 Vorkommen von GD3 16 1.3.2 Biologische Wirkungen von GD3 17 1.3.3 GD3 als Zielstruktur in der Tumortherapie 20 1.3.4 Modifikationen der Sialinsäure von GD3 23 1.3.4.1 9-O-Acetylierung der terminalen Sialinsäure von GD3 23 1.3.4.2 Oxidation der terminalen Sialinsäure von GD3 25 1.4 Zielstellung 27 2 MATERIAL UND METHODEN 28 2.1 Materialien 28 2.1.1 Biologische Materialien 28 2.1.1.1 Patientenproben 28 2.1.1.2 Versuchstiere 28 2.1.1.3 Zelllinien und Hybridome 28 2.1.2 Reagenzien, Antikörper und Enzyme 29 2.1.3 Chemikalien 31 2.1.4 Geräte und Hilfsmittel 32 2.2 Methoden 34 2.2.1 Zellkultur 34 2.2.1.1 Kulturmedien 34 2.2.1.2 Zellkulturtechnik 35 2.2.1.3 Zellernte der Suspensionszellen 35 2.2.1.4 Zellernte der adhärenten Zelllinien 35 2.2.1.5 Bestimmung der Zellzahl 36 2.2.1.6 Kryokonservierung 36 2.2.1.7 Auftauen 37 2.2.1.8 Hybridomkultivierung 37 2.2.1.9 Kultur von AML Blasten 37 2.2.2 Durchflusszytometrie 37 2.2.2.1 Oberflächenfärbung von Zelllinien 38 2.2.2.2 Oberflächenfärbung von PBMC und Granulozyten 39 2.2.2.3 Intrazelluläre Färbung 39 2.2.2.4 Detektion reaktiver Sauerstoffspezies mittels DCFDA-Färbung 39 2.2.2.5 SubG1-Analyse 41 2.2.3 Aufarbeitung von Gangliosiden aus Zellen 41 2.2.3.1 Herstellung des Rohextraktes 42 2.2.3.2 Entsalzung des Extraktes an einer Reversed Phase Chromatographie-Säule 43 2.2.4 Dünnschichtchromatographie - HPTLC (High Performance Thin Layer Chromatographie) 44 2.2.4.1 Detektion mit Orcinfärbung 44 2.2.4.2 Detektion mit Primulin - Färbung 45 2.2.4.3 Detektion mit Overlay - Immunfärbung 45 2.2.5 Isolation von Glycolipiden aus lyophilisierter Buttermilch 47 2.2.5.1 Herstellung des Rohextraktes 48 2.2.5.2 Entsalzung mittels Dialyse 49 2.2.5.3 Si60-Kieselgel-Chromatographie 49 2.2.5.4 DEAE-Ionenaustauschchromatographie 50 2.2.5.5. Entsalzung mit RP-Säule 51 2.2.5.6 HPLC (High Performance Liquid Chromatographie) 51 2.2.6 Herstellung von GD3-7-Aldehyd aus GD3 52 2.2.6.1 Oxidation von Gangliosiden in situ auf HPTLC-Platten 52 2.2.6.2 Darstellung von GD3-7-Aldehyd unter Verwendung von Wasserstoffperoxid und Eisen-II-clorid (Fenton Reaktion) 53 2.2.7 Herstellung monoklonaler Antikörper gegen GD3-7-Aldehyd 53 2.2.7.1 Immunisierung der Mäuse 54 2.2.7.2 Vorbereitung der Myelomzellen 54 2.2.7.3 Präparation der Milzzellen 55 2.2.7.4 Fusion der Milz- und Myelomzellen 55 2.2.7.5 Selektion und Klonierung 56 2.2.7.5.1 Screening 56 2.2.7.5.2 Ermittlung der Spezifität 57 2.2.7.5.3 Bestimmung der Immunglobulinklasse und des Subtyps 57 2.2.8 Separation mononukleärer Zellen (PBMCs) und Granulozyten aus Vollblut 57 2.2.8.1 Isolation einzelner Leukozytenpopulationen mittels MACS Technologie 58 2.2.8.1.1 Positivselektion von Monozyten 58 2.2.8.1.2 Positivselektion von Slan-DCs mit M-DC8 58 2.2.9 Generierung und Maturierung von Dendritischen Zellen aus Monozyten 59 2.2.10 Indirekte Immunfluoreszenz 60 2.2.10.1 Aufzentrifugieren von Suspensionszellen auf Objektträger 60 2.2.10.2 Fixierung und Permeabilisierung der Zellen auf Objektträgern 60 2.2.10.3 Fluoreszenzfärbung von Zellen und Geweben auf Objektträgern 60 2.2.11 Immunhistochemische Färbung mit modifizierter ABC-Methode 61 2.2.12 Behandlung von HL60 mit GD3-7-Aldehyd 62 2.2.13 Inkubationsversuche von Molt-4 mit unterschiedlichen GD3-Derivaten 63 2.2.14 Induktion reaktiver Sauerstoffspezies in HEp-2 durch UV-Bestrahlung 63 3 ERGEBNISSE 64 3.1 Darstellung der Glycolipidantigene GD3, 9-O-acetyl-GD3 und GD3-7-Aldehyd 65 3.1.1 Isolation von GD3 und 9-O-acetyl-GD3 aus lyophilisierter Buttermilch 65 3.1.1.1 Reinigung des Rohextraktes über Si60-Kieselgelchromatographie 65 3.1.1.2 Reinigung des Glycolipidgemisches über DEAE-Sepharose-Ionenaustauschchromatographie 66 3.1.1.3 Reinigung der Ganglioside GD3 und 9-O-acetyl-GD3 mittels High Performance Liquid Chromatographie (HPLC) 67 3.1.1.4 Quantifizierung des gewonnenen Gangliosids GD3 69 3.1.1.5 Aufarbeitung von Gangliosidproben zur Gewinnung von 9-O-acetyl-GD3 70 3.1.2 Darstellung von GD3-7-al aus GD3 unter Verwendung von Natriumperjodat 71 3.2 Herstellung eines GD3-7-Aldehyd-spezifischen monoklonalen Antikörpers 73 3.2.1 Milzpräparation und Fusion 75 3.2.2 Entwicklung einer Screening-Methode für Hybridoma-Überstände 75 3.2.3 Vermehrung und Klonierung der produzierenden Zellen 77 3.2.4 Spezifität der Klone 77 3.2.5 Sensitivität der glycolipidspezifischen monoklonalen Antikörper 82 3.2.6 Nutzbarkeit des Antikörpers 10C6 für die Durchflusszytometrie 85 3.3 Apoptoseinduktion mit unterschiedlichen GD3-Derivaten an Molt-4-Zellen 86 3.4 Darstellung von GD3-7-al in vitro unter Bedingungen des oxidativen Stresses 88 3.5 Vorkommen von GD3-7-Aldehyd in biologischen Materialien 89 3.5.1 Indirekte Immunfluoreszenz mit den Antikörpern R24, M-T6004 und 10C6 auf verschiedenen Primatengeweben 89 3.5.2 Immunhistochemie mit den Antikörpern R24, M-T6004 und 10C6 auf humanem Darmgewebe 92 3.5.3 GD3-Metabolite im Lipidextrakt verschiedener Tumorzelllinien 93 3.5.4 GD3-Metabolite in Tumorgeweben 95 3.5.5 Nachweis von GD3-7-Aldehyd in peripheren mononukleären Blutzellen 97 3.5.5.1 Identifizierung der GD3-7-Aldehyd-haltigen Zellpopulation mittels Durchflusszytometrie 98 3.5.5.2 Untersuchung 6-Sulfo-LacNAc-dendritischer Zellen aus peripherem Blut auf das Vorkommen von GD3-7-Aldehyd 100 3.5.5.3 Untersuchung der von Monozyten abgeleiteten dendritischen Zellen (MoDCs) 101 3.5.5.4 Untersuchung von Granulozyten 103 3.5.5.5 Vorkommen von GD3 und GD3-7-Aldehyd auf der Oberfläche von AML-Blasten 105 3.6 Untersuchung der Eignung von GD3-7-Aldehyd als mögliche Zielstruktur für eine immunologische Tumortherapie 107 3.6.1 Auswirkung von Bestrahlung und Wasserstoffperoxidinkubation auf die Ausprägung des 10C6 - Antigens auf der Oberfläche von AML-Blasten 107 3.6.2 Oxidation des Gangliosides GD3 auf der Oberfläche von Melanomzellen 108 3.6.3 Untersuchung der Ausprägung des 10C6-Antigens auf der Oberfläche von HEp-2-Zellen in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 109 3.6.4 Untersuchung der Ausprägung von GD3-7-Aldehyd auf der Oberfläche von SK-Mel-23-Zellen in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 112 3.6.5 Nachweis der Einlagerung von GD3-7-Aldehyd in die Zellmembran von HL60-Zellen 114 3.6.5.1 Nachweis des integrierten GD3-7-Aldehyd in Abhängigkeit von der Zeit 115 4 DISKUSSION 117 4.1 Untersuchung von GD3-7-Aldehyd – der Weg vom Apoptosemediator zum Tumortarget 117 4.2 Darstellung der Glycolipidantigene GD3, 9-O-acetyl-GD3 und GD3-7-Aldehyd 118 4.3 GD3-7-Aldehyd als Effektormolekül der mitochondrial vermittelten Apoptose 120 4.4 Gangliosidspezifische Antikörper 124 4.4.1 Immunogenität von nativen und modifizierten Gangliosiden 124 4.4.2 Auswahl antikörperproduzierender Zellklone mit neuem Screeningverfahren 127 4.4.3 Bindungsverhalten des monoklonalen Antikörpers 10C6 127 4.4.4 Bindungsverhalten des monoklonalen Antikörpers R24 128 4.4.5 Bindungsverhalten des monoklonalen Antikörpers M-T6004 129 4.4.6 Nutzbarkeit des monoklonalen Antikörpers 10C6 für die Durchflusszytometrie und die indirekte Immunfluoreszenz 129 4.5 Reaktive Sauerstoffspezies in biologischen Systemen 129 4.5.1 Darstellung von GD3-7-al in vitro unter Bedingungen des oxidativen Stresses 130 4.6 Vorkommen von GD3-7-Aldehyd in biologischen Systemen 131 4.6.1 Gewebefärbungen 131 4.6.2 Vorkommen von GD3-7-Aldehyd in Tumorzellen 132 4.6.3 Vorkommen von GD3-7-Aldehyd auf peripheren mononukleären Blutzellen 135 4.7 Tumortargeting mit GD3-7-Aldehyd 137 4.7.1 Untersuchung des Vorkommens von GD3-7-Aldehyd in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 137 4.7.2 Dekorationsversuche HL60 138 4.7.3 Einbau veränderter Sialinsäuren als Therapiemodell 138 4.8 Ausblick 141 5 ZUSAMMENFASSUNG 143 6 LITERATURVERZEICHNIS 147 ANHANG 159 Abkürzungen 159 Abbildungen 162 Tabellen 166 Danksagung 167 THESEN 168 ANLAGE 1 169 ANLAGE 2 170 / Glycosphingolipids are a group of amphiphatic membrane and structure lipids consisting of one molecule of the aminoalcohol Sphingosin or one of its derivatives, a long chain fatty acid, and a carbohydrate moiety as polar side chain. One subgroup of these substances are gangliosides, which are characterized by sialic acid as a component of their glycan chain. The ganglioside GD3 is described as tumor associated antigen on the surface of neuroectodermal tumors and as proapoptotic lipid mediator. Its biological functions as well as its mode of operation in the context of apoptosis still remain unclear. There are hints, that not GD3 itself, but an oxidized derivative represents the actual effector molecule. A minimal change in the GD3 molecule, the 9-O-acetylation of the side chain of the terminal sialic acid, abolishes the proapoptotic effect completely. Tumor cells with activity of the enzyme 9-O-acetyltransferase can escape from apoptosis like that. The request of this work was to investigate the occurrence and function of this so far solely artificially generated oxidized GD3 derivative. The impact of oxidized GD3 on the survival of GD3-resistant tumor cells had to be analyzed. It had to be examined, whether GD3-7-aldehyde occurs in primary cells and tissues. Withal it was to clarify, if the molecule occurs under conditions of oxidative stress and if it can be induced on the surface of cells or intracellularly. Following that, it was to contemplate which novel approaches of immunological therapies for the treatment of resistant tumors could be possible under the use of GD3-7-aldehyde. Prerequisite to all experiments of this work and for following research are reliable detection methods of the metabolites GD3, and GD3-7-aldehyde. Whereas for the detection of GD3 and 9-O-acetyl-GD3 monoclonal antibodies were already existing, for the detection of GD3-7-aldehyde a novel monoclonal antibody directed against an oxidized ganglioside had to be generated for the first time and had to be characterized. For the selection of antibody producing cells, a new screening method had to be established. For the examination of the binding behavior of the ganglioside specific antibodies and for the performance of the incubation assays the gangliosides GD3 and 9-O-acetyl-GD3 had to be isolated from lyophilized bovine buttermilk via several chromatography steps and the oxidized derivative had to be produced. In doing so, GD3-7-al was purified by HPLC for the first time. The monoclonal antibody 10C6 generated in the framework of this study is member of immunoglobulin subclass IgG2a and binds to the oxidized form of the ganglioside GD3. The antigen detected by 10C6 is a glycan chain with structure Neu5Ac-8Neu5Ac-3Gal with oxidized terminal sialic acid. The antibody does not react with reduced or 9-O-acetylated forms of the ganglioside GD3 and possesses a higher sensitivity than the antibodies, established for the detection of both other GD3 derivatives. In this work it is shown in vitro, that the oxidative modification of GD3 to GD3-7-aldehyde can arise under conditions of oxidative stress. In GD3-resistant Molt-4-cells this substance induces apoptosis. Therefore GD3-7-aldehyde comes into consideration to be a proapoptotic effector molecule. The antigen detected by 10C6 occurs on the surface of monocytes of particular donors. Further, it can be found on the surface of a portion of the blasts of acute myeloic leukemia. Other leucocytes of the peripheral blood do not show this structure. GD3-7-aldehyde occurs in tumor cell lines HEp-2, HL60, and T47D. Hints for the existence of structures with oxidatively modified sialic acid were found in tissue slides of human mamma carcinoma and fetal gut. In tissues of adult primates this was not the case. On the surface of melanoma cell lines like Ma-Mel-11, Ma-Mel-95, and SK-Mel-23, existing GD3 can be converted into GD3-7-aldehyde by sodium periodate treatment. UV radiation can induce a structure detectable by 10C6 on the surface of HEp-2- and SK-Mel-23-cells. HL60-cells can be decorated by externally administered GD3-7-aldehyde. It is detectable on their surface for up to 48 hours. For an immunological approach of tumor therapy, the sparsely incidence of this antigen in healthy tissues as well as the inducibility on the surface of distinct tumor cells after pretreatment and the toxicity of this substance could be advantageous. A fitting antibody is now available. The detection methods established in the context of this work can be applied for further investigations in glycolipid research.:1 EINLEITUNG 1 1.1 Sphingolipide, Glycosphingolipide und Ganglioside 1 1.1.1 Biosynthese und Transport der Ganglioside 5 1.1.2 Biologische Funktionen und pathophysiologische Bedeutung der Ganglioside 10 1.2 Sialinsäuren 12 1.3 Das Disialogangliosid GD3 16 1.3.1 Vorkommen von GD3 16 1.3.2 Biologische Wirkungen von GD3 17 1.3.3 GD3 als Zielstruktur in der Tumortherapie 20 1.3.4 Modifikationen der Sialinsäure von GD3 23 1.3.4.1 9-O-Acetylierung der terminalen Sialinsäure von GD3 23 1.3.4.2 Oxidation der terminalen Sialinsäure von GD3 25 1.4 Zielstellung 27 2 MATERIAL UND METHODEN 28 2.1 Materialien 28 2.1.1 Biologische Materialien 28 2.1.1.1 Patientenproben 28 2.1.1.2 Versuchstiere 28 2.1.1.3 Zelllinien und Hybridome 28 2.1.2 Reagenzien, Antikörper und Enzyme 29 2.1.3 Chemikalien 31 2.1.4 Geräte und Hilfsmittel 32 2.2 Methoden 34 2.2.1 Zellkultur 34 2.2.1.1 Kulturmedien 34 2.2.1.2 Zellkulturtechnik 35 2.2.1.3 Zellernte der Suspensionszellen 35 2.2.1.4 Zellernte der adhärenten Zelllinien 35 2.2.1.5 Bestimmung der Zellzahl 36 2.2.1.6 Kryokonservierung 36 2.2.1.7 Auftauen 37 2.2.1.8 Hybridomkultivierung 37 2.2.1.9 Kultur von AML Blasten 37 2.2.2 Durchflusszytometrie 37 2.2.2.1 Oberflächenfärbung von Zelllinien 38 2.2.2.2 Oberflächenfärbung von PBMC und Granulozyten 39 2.2.2.3 Intrazelluläre Färbung 39 2.2.2.4 Detektion reaktiver Sauerstoffspezies mittels DCFDA-Färbung 39 2.2.2.5 SubG1-Analyse 41 2.2.3 Aufarbeitung von Gangliosiden aus Zellen 41 2.2.3.1 Herstellung des Rohextraktes 42 2.2.3.2 Entsalzung des Extraktes an einer Reversed Phase Chromatographie-Säule 43 2.2.4 Dünnschichtchromatographie - HPTLC (High Performance Thin Layer Chromatographie) 44 2.2.4.1 Detektion mit Orcinfärbung 44 2.2.4.2 Detektion mit Primulin - Färbung 45 2.2.4.3 Detektion mit Overlay - Immunfärbung 45 2.2.5 Isolation von Glycolipiden aus lyophilisierter Buttermilch 47 2.2.5.1 Herstellung des Rohextraktes 48 2.2.5.2 Entsalzung mittels Dialyse 49 2.2.5.3 Si60-Kieselgel-Chromatographie 49 2.2.5.4 DEAE-Ionenaustauschchromatographie 50 2.2.5.5. Entsalzung mit RP-Säule 51 2.2.5.6 HPLC (High Performance Liquid Chromatographie) 51 2.2.6 Herstellung von GD3-7-Aldehyd aus GD3 52 2.2.6.1 Oxidation von Gangliosiden in situ auf HPTLC-Platten 52 2.2.6.2 Darstellung von GD3-7-Aldehyd unter Verwendung von Wasserstoffperoxid und Eisen-II-clorid (Fenton Reaktion) 53 2.2.7 Herstellung monoklonaler Antikörper gegen GD3-7-Aldehyd 53 2.2.7.1 Immunisierung der Mäuse 54 2.2.7.2 Vorbereitung der Myelomzellen 54 2.2.7.3 Präparation der Milzzellen 55 2.2.7.4 Fusion der Milz- und Myelomzellen 55 2.2.7.5 Selektion und Klonierung 56 2.2.7.5.1 Screening 56 2.2.7.5.2 Ermittlung der Spezifität 57 2.2.7.5.3 Bestimmung der Immunglobulinklasse und des Subtyps 57 2.2.8 Separation mononukleärer Zellen (PBMCs) und Granulozyten aus Vollblut 57 2.2.8.1 Isolation einzelner Leukozytenpopulationen mittels MACS Technologie 58 2.2.8.1.1 Positivselektion von Monozyten 58 2.2.8.1.2 Positivselektion von Slan-DCs mit M-DC8 58 2.2.9 Generierung und Maturierung von Dendritischen Zellen aus Monozyten 59 2.2.10 Indirekte Immunfluoreszenz 60 2.2.10.1 Aufzentrifugieren von Suspensionszellen auf Objektträger 60 2.2.10.2 Fixierung und Permeabilisierung der Zellen auf Objektträgern 60 2.2.10.3 Fluoreszenzfärbung von Zellen und Geweben auf Objektträgern 60 2.2.11 Immunhistochemische Färbung mit modifizierter ABC-Methode 61 2.2.12 Behandlung von HL60 mit GD3-7-Aldehyd 62 2.2.13 Inkubationsversuche von Molt-4 mit unterschiedlichen GD3-Derivaten 63 2.2.14 Induktion reaktiver Sauerstoffspezies in HEp-2 durch UV-Bestrahlung 63 3 ERGEBNISSE 64 3.1 Darstellung der Glycolipidantigene GD3, 9-O-acetyl-GD3 und GD3-7-Aldehyd 65 3.1.1 Isolation von GD3 und 9-O-acetyl-GD3 aus lyophilisierter Buttermilch 65 3.1.1.1 Reinigung des Rohextraktes über Si60-Kieselgelchromatographie 65 3.1.1.2 Reinigung des Glycolipidgemisches über DEAE-Sepharose-Ionenaustauschchromatographie 66 3.1.1.3 Reinigung der Ganglioside GD3 und 9-O-acetyl-GD3 mittels High Performance Liquid Chromatographie (HPLC) 67 3.1.1.4 Quantifizierung des gewonnenen Gangliosids GD3 69 3.1.1.5 Aufarbeitung von Gangliosidproben zur Gewinnung von 9-O-acetyl-GD3 70 3.1.2 Darstellung von GD3-7-al aus GD3 unter Verwendung von Natriumperjodat 71 3.2 Herstellung eines GD3-7-Aldehyd-spezifischen monoklonalen Antikörpers 73 3.2.1 Milzpräparation und Fusion 75 3.2.2 Entwicklung einer Screening-Methode für Hybridoma-Überstände 75 3.2.3 Vermehrung und Klonierung der produzierenden Zellen 77 3.2.4 Spezifität der Klone 77 3.2.5 Sensitivität der glycolipidspezifischen monoklonalen Antikörper 82 3.2.6 Nutzbarkeit des Antikörpers 10C6 für die Durchflusszytometrie 85 3.3 Apoptoseinduktion mit unterschiedlichen GD3-Derivaten an Molt-4-Zellen 86 3.4 Darstellung von GD3-7-al in vitro unter Bedingungen des oxidativen Stresses 88 3.5 Vorkommen von GD3-7-Aldehyd in biologischen Materialien 89 3.5.1 Indirekte Immunfluoreszenz mit den Antikörpern R24, M-T6004 und 10C6 auf verschiedenen Primatengeweben 89 3.5.2 Immunhistochemie mit den Antikörpern R24, M-T6004 und 10C6 auf humanem Darmgewebe 92 3.5.3 GD3-Metabolite im Lipidextrakt verschiedener Tumorzelllinien 93 3.5.4 GD3-Metabolite in Tumorgeweben 95 3.5.5 Nachweis von GD3-7-Aldehyd in peripheren mononukleären Blutzellen 97 3.5.5.1 Identifizierung der GD3-7-Aldehyd-haltigen Zellpopulation mittels Durchflusszytometrie 98 3.5.5.2 Untersuchung 6-Sulfo-LacNAc-dendritischer Zellen aus peripherem Blut auf das Vorkommen von GD3-7-Aldehyd 100 3.5.5.3 Untersuchung der von Monozyten abgeleiteten dendritischen Zellen (MoDCs) 101 3.5.5.4 Untersuchung von Granulozyten 103 3.5.5.5 Vorkommen von GD3 und GD3-7-Aldehyd auf der Oberfläche von AML-Blasten 105 3.6 Untersuchung der Eignung von GD3-7-Aldehyd als mögliche Zielstruktur für eine immunologische Tumortherapie 107 3.6.1 Auswirkung von Bestrahlung und Wasserstoffperoxidinkubation auf die Ausprägung des 10C6 - Antigens auf der Oberfläche von AML-Blasten 107 3.6.2 Oxidation des Gangliosides GD3 auf der Oberfläche von Melanomzellen 108 3.6.3 Untersuchung der Ausprägung des 10C6-Antigens auf der Oberfläche von HEp-2-Zellen in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 109 3.6.4 Untersuchung der Ausprägung von GD3-7-Aldehyd auf der Oberfläche von SK-Mel-23-Zellen in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 112 3.6.5 Nachweis der Einlagerung von GD3-7-Aldehyd in die Zellmembran von HL60-Zellen 114 3.6.5.1 Nachweis des integrierten GD3-7-Aldehyd in Abhängigkeit von der Zeit 115 4 DISKUSSION 117 4.1 Untersuchung von GD3-7-Aldehyd – der Weg vom Apoptosemediator zum Tumortarget 117 4.2 Darstellung der Glycolipidantigene GD3, 9-O-acetyl-GD3 und GD3-7-Aldehyd 118 4.3 GD3-7-Aldehyd als Effektormolekül der mitochondrial vermittelten Apoptose 120 4.4 Gangliosidspezifische Antikörper 124 4.4.1 Immunogenität von nativen und modifizierten Gangliosiden 124 4.4.2 Auswahl antikörperproduzierender Zellklone mit neuem Screeningverfahren 127 4.4.3 Bindungsverhalten des monoklonalen Antikörpers 10C6 127 4.4.4 Bindungsverhalten des monoklonalen Antikörpers R24 128 4.4.5 Bindungsverhalten des monoklonalen Antikörpers M-T6004 129 4.4.6 Nutzbarkeit des monoklonalen Antikörpers 10C6 für die Durchflusszytometrie und die indirekte Immunfluoreszenz 129 4.5 Reaktive Sauerstoffspezies in biologischen Systemen 129 4.5.1 Darstellung von GD3-7-al in vitro unter Bedingungen des oxidativen Stresses 130 4.6 Vorkommen von GD3-7-Aldehyd in biologischen Systemen 131 4.6.1 Gewebefärbungen 131 4.6.2 Vorkommen von GD3-7-Aldehyd in Tumorzellen 132 4.6.3 Vorkommen von GD3-7-Aldehyd auf peripheren mononukleären Blutzellen 135 4.7 Tumortargeting mit GD3-7-Aldehyd 137 4.7.1 Untersuchung des Vorkommens von GD3-7-Aldehyd in Abhängigkeit vom Auftreten reaktiver Sauerstoffspezies 137 4.7.2 Dekorationsversuche HL60 138 4.7.3 Einbau veränderter Sialinsäuren als Therapiemodell 138 4.8 Ausblick 141 5 ZUSAMMENFASSUNG 143 6 LITERATURVERZEICHNIS 147 ANHANG 159 Abkürzungen 159 Abbildungen 162 Tabellen 166 Danksagung 167 THESEN 168 ANLAGE 1 169 ANLAGE 2 170

Page generated in 0.0416 seconds