• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Metal Powders Produced by Two Gas Atomizing Methods for Thermal Spraying Applications

Pettersson, Tim January 2015 (has links)
This thesis work is focused on the influence of process parameters during gas atomization on the thermal spraying properties of a Ni-Cr-B-Si hardfacing alloy. The metal powder alloy, known as 1-60-20, is produced by Höganäs AB. There have been problems with insufficient fusing during flame spraying of this particular alloy sometimes, even though the chemical composition is always within spec. This has lead to a theory that the difference in performance is caused by differences in parameters during gas atomization. Several gas-gas and gas-water atomizations with varying parameters were performed at the Höganäs Pilot Centre. The powder samples were then analyzed by sieving, scanning electron microscopy, x-ray diffraction and finally tested by powder welding. The results show that by increasing the cooling rate during gas atomization the formation of unstable Ni-borides is possible for this alloy. If these Ni-borides will enhance the fusing properties of the alloy is unknown. According to the literature studied, it should however improve the fusing properties.
2

Contribution à la compréhension et à la maîtrise du procédé d'atomisation de jets métalliques liquides / Contribution to the understanding and control of the process of liquid metal atomization jets

Khatim, Othmane 22 July 2011 (has links)
La demande croissante de poudres d‟alliages métalliques aux propriétés spécifiques utilisées en particulier en projection thermique et fabrication rapide pousse les chercheurs à améliorer et à optimiser sans cesse les procédés de production de ces poudres. L‟objectif affiché sur ces procédés est de maîtriser à la fois morphologie/ distribution de taille des particules produites et coût de fabrication. Actuellement, la majorité de ces poudres est produite par des procédés d‟atomisation par fluide et essentiellement par le procédé d‟atomisation gazeuse. Parmi ces procédés, le procédé Nanoval utilisant une buse «De Laval» est l‟un des plus performants en termes de distribution granulométrique et de rendement.L‟objectif principal de ce travail de thèse vise à améliorer la compréhension des phénomènes physiques mis en jeu par le procédé Nanoval afin d‟en optimiser le fonctionnement. Deux approches composent ce travail :- une partie numérique de modélisation sous Fluent. Deux modèles ont été étudiés, un modèle monophasique relatif à l‟écoulement gazeux dans l‟unité d‟atomisation (passage de l‟autoclave à la chambre d‟atomisation) et un modèle diphasique relatif à la constriction du filament de métal liquide en sortie de buse de coulée. Cette étude numérique a permis de mettre en évidence l‟effet des paramètres opératoires tels que la pression d‟atomisation et le diamètre de la buse de coulée sur la dynamique du jet de gaz, sur la striction du filament de métal liquide ainsi que les zones de forte pression et de haute vitesse avant, pendant et après la désintégration du filament métallique.- une partie expérimentale pour laquelle la mise en place d‟outils de diagnostic in–situ a été nécessaire pour la caractérisation du procédé en cours de fonctionnement. Trois analyses ont été conduites. La première renseigne de la dynamique du jet d‟atomisation évaluée à partir de mesures de Vélocimétrie par Images de Particules (PIV) à proximité de la sortie de la buse De Laval. La deuxième concerne les caractéristiques à l‟écrasement des particules sur un substrat placé dans la chambre d‟atomisation. La troisième et dernière analyse porte sur les propriétés des particules produites et la comparaison avec la matière récupérée après refroidissement dans l‟autoclave. Différents paramètres opératoires ont été explorés (pression d‟atomisation, diamètre de la buse de coulée, pression dans la chambre d‟atomisation, nature du métal) et reliés à leur influence sur la vitesse et le diamètre des particules. Des relations directes entre les résultats de ces trois analyses ont pu être démontrées ainsi qu‟une bonne adéquation entre résultats expérimentaux et résultats issus de la modélisation. / The growing demand for metal alloy powders with specific properties used in thermal spray application and rapid manufacturing encourages researchers to improve and optimize their manufacturing processes. The aim of these processes is to master both morphology/particle size distribution and manufacturing cost. Today the vast majority of powders are produced by fluid atomization and mainly gas atomization process. Among them, the Nanoval process, consisting of a De Laval nozzle is one of the most outstanding process in terms of granulometric distribution and output.The main objective of this thesis is to improve the understanding of the physical phenomena occurring in the Nanoval process to optimize the way it operates. Two approaches will be developed:- A numerical study using Fluent. The two following models were studied, one monophasic concerning gas flow in the atomization unit form autoclave to atomization chamber and the other, a diphasic model concerning the finest part of the filament in the exit of the melt nozzle. This numerical study has highlighted the effect of parameters such as atomization pressure, nozzle diameter on the gas dynamics, fine filament, high-pressure and high speed areas before, during the process and after the disintegration of the metallic filament.- And an experimental study which required the implementation of the in-situ diagnosticTools to characterize the process under working conditions. Three analyses were carried out. The first concerns the dynamics of the atomization jet from Velocimetry measures by Particle Image Velocimetry (PIV) close to De Laval nozzle exit. The second deals with the characteristics obtained when particles impact the substrate in the atomization chamber. The third describes the particle properties and deals with the comparison with the matter in the autoclave after cooling process. Different operating parameters were explored (atomization pressure, melt nozzle diameter, pressure in the atomization chamber, nature of metal) and linked to their influence on the particle velocity and diameter. Narrow links between the analysis results were demonstrated as well as a good adequacy between experimental and modeling results.
3

Moderní hliníkové slitiny připravené práškovou metalurgií a plasmovým sintrováním / Advanced aluminium alloys prepared by powder metallurgy and spark plasma sintering

Molnárová, Orsolya January 2018 (has links)
Mechanical properties of aluminium alloys highly depend on their phase composition and microstructure. High strength can be achieved among others by introduction of a high volume fraction of fine, homogeneously distributed second phase particles and by a refinement of the grain size. Powder metallurgy allows to prepare fine grained materials with increased solid solubility which are favourable precursors for further precipitation strengthening. Gas atomization was used for the preparation of powders of the commercial Al7075 alloy and its modification containing 1 wt% Zr. A part of gas atomized powders was mechanically milled at different conditions. Mechanical milling reduced the grain size down to the nano-size range and the corresponding microhardness exceeded the value of 300 HV. Powders were consolidated by the spark plasma sintering method to nearly fully dense compacts. Due to a short time and relatively low temperature of sintering the favourable microstructure can be preserved in the bulk material. The grain size of compacts prepared from milled powder was retained in the submicrocrystalline range and the microhardness close to 200 HV exceeded that of the specially heat treated ingot metallurgical counterparts. The prepared compacts retained their fine grained structure and high...
4

Modelling Gas Flow Behaviour in Gas Atomizer

Vasanthasenan Reji, Aravind Senan January 2022 (has links)
Gas atomization is regarded as a reliable method for creating high-quality metal powders from molten metal. The liquid metal is fed into the chamber as a free-falling stream through a nozzle, where it is impinged by high-velocity gas jets, causing degeneration and production of metal droplets, which solidify to create metal powders. As the metal droplets fall lower towards the collection hoopers, the solidification process begins. As a result, having a strong handle on the process parameters helps to produce metal powders that are fine, spheroidized, and have good characteristics. A free fall atomizer with twelve discrete nozzles, having a cylindrical internal profile, arranged in two different levels has been employed to introduce high-velocity gas jets into the chamber, for the current study. A cross-sectional sketch created by Uddeholm AB provided the geometric dimensions, and CFD was used to generate a simulation experiment for the system. Fluent setup input values were derived from literature data. The primary objective of the study is to analyze the influence of varying inlet pressure and the number of discrete gas jet nozzles, on the flow behavior of the atomizing gas. Additionally, the Discrete Phase Model approach was adopted to study the interaction of particles with the gas flow. The simulation model was validated by carrying out the visualization experiment, Schlieren imaging. From the study, it was realized that the results of the numerical model showed a mismatch relative to the experimental value. This can be attributed to the discretization technique, input parameters and the numerical model employed in this study. However, the parametric study provided a qualitative analysis regarding the influence of input parameters on flow behavior. It was studied that with increasing the inlet pressure and number of discrete nozzles there is a subsequent increase in the maximum velocity attained by the atomizing gas, resulting in a decrease in velocity of melt introduced into the system. Additionally, a radial pressure gradient was observed to be present that increased in accordance with the parameters, resulting in reduction of the melt film thickness produced during pre-filming mechanism. However, the Discrete Phase Model provided evidence that with increment in the gas to melt ratio, the number of particles that get dispersed to make collision with the domain wall increased. Thus, a subsequent increase in downstream velocity was required to maintain the particles within the domain walls as the study parameters were increased. / Gasatomisering betraktas vara en tillförlitlig metod för att skapa högkvalitativt metallpulver från smält metall. Den flytande metallen matas in i en kammare som en fri fallande ström genom ett munstycke, där den trycks in av höghastighetsstrålar. Vilket skapar en degeneration och en bildandet av metalldroppar som stelnar till att metallpulver kan skapas. Stelningsprocessen börjar när metalldropparna faller emot uppsamlingsbågarna. Ett fint och sfärisk metall metallpulver med goda egenskaper kan produceras genom att ha en god kontroll på processparametrarna. I denna studie har en ”Free Fall Atomizer” med tolv diskreta munstycken med en cylindrisk profil arrangerade i två olika nivåer använts för att introducera höghastighetsstrålar i kammaren. De geometriska dimensionerna var försedda från en ritning i tvärsnitt skapad av Uddeholms AB och samt användes en CFD för att generera ett simulationsexperiment av systemet. Ingångsvärden för inställningarna av flödena härleddes från litteraturdata. Huvudsyftet med studien var att studera flödesbeteendet av den atomiserande gasen genom att analysera inflytandet av att variera ingångstrycket och antalet diskreta gasstrålmunstycken. Dessutom togs det till en diskret fasmodell för att studera partiklarnas interaktion med gasflödet. Simulationsmodellen validerades genom att utföra ett visualiseringsexperiment genom Schlierenfotografering. Det framgick i studien att den numeriska modellens resultat inte stämde överens med det experimentella värdet. Detta kan attribueras till diskretiseringstekniken, inmatningsparametrarna och den numeriska modellen som användes i studien. Hur som helst försedde den parametriska studien en kvalitativ analys angående inflytandet av inmatningsparametrarna på flödesbeteendet. Det framgick att en ökning av ingångstrycket och av antalet av diskreta munstycken gav en påföljande ökning i den maximala hastigheten som den atomiserande gasen kan erhålla. Vilket resulterar till en sänkning av hastigheten av smältan som introduceras till systemet. Dessutom observerades en radiell tryckgradient vara närvarande som ökade i enlighet med parametrarna. Det resulterade i en reduktion av smältfilmtjockleken som producerades under förfilmingsmekaniskmen. Trots det visade den diskreta fasmodellen att en ökning av gas till smältförhållandet också ökade antalet partiklar som sprids vidare för att kollidera med domänväggen. Således krävdes en påföljande ökning av nedströmningshastigheten för att bibehålla partiklarna inom domänväggar när studiens parametrar ökade.
5

Experimental and Theoretical Investigation of Selective Laser Melted Uddeholm Dievar ®

Pepić, Sanjin, Ridemar, Otto January 2019 (has links)
The main problem encountered in this thesis is the lack of research and knowledge of selective laser melted-printing with Uddeholm Dievar®. This absence of information could cause issues regarding quality and properties of the alloy as well as uncertainty regarding an appropriate heat treatment cycle. This thesis mainly focuses on observing the changes that occur in the microstructure when Uddeholm Dievar® is manufactured through the additive manufacturing (AM) method known as selective laser melting (SLM). The SLM- method consists of a high-power laser that melts together thin layers of powder, one layer at a time, until a three-dimensional product is created according to selected drawings. The methodology on which this thesis is based on is the execution of a theoretical study, scientific experiments and thermodynamic calculations. Analysis of the microstructure is performed using a scanning electron microscope with techniques such as Energy-dispersive X-ray spectroscopy (EDS) and Electron backscatter diffraction (EBSD). The purpose of the methods are to map the constituent elements of the alloy and observe the orientation of the crystallographic phases in the atomic lattice respectively. The results show that the powder, both before and after printing, mainly consists of martensite with a low amount of residual austenite. The amount of primary carbides is relatively low and has been classified as MC (V-rich) and/or M6C (Mo- rich) type. The remaining residual austenite could be explained by the segregation of constituent alloying elements, where the carbon content is a dominant factor to why the MS -temperature lowers significantly causing the presence of retained austenite even though SLM has a cooling rate that varies between 103 and 108 [K/s]. / Det huvudsakliga problemet som denna avhandling behandlar är bristen på forskning och kunskap inom selective laser melting (SLM) 3D-printing med Uddeholm Dievar®. Avsaknaden kan leda till sämre kvalité och produktegenskaper hos legeringen. Det kan även leda till ovisshet gällande val av lämplig värmebehandling. Arbetet fokuserar på att dokumentera utformningen av stålets mikrostruktur när Uddeholm Dievar® tillverkas med den additiva tillverkningsmetoden SLM. Tillverkningsprocessen består av en högeffektslaser som detaljerat smälter samman tunna lager pulver, ett lager i taget, tills att en tredimensionell produkt skapats utefter valda ritningar. Använda metoder är; utförandet av en teoretisk studie, vetenskapliga experiment och thermodynamiska beräkningar. Analys av mikrostrukturen genomförs med hjälp av svepelektronmikroskåp där teknikerna Energy-dispersive X-ray spectroscopy (EDS) och Electron backscatter diffraction (EBSD) används. Syftet med EDS är att kartlägga de ingående elementen i legeringen, syftet med EBSD är att se orientering av de kristallografiska faserna i atomgittret. Resultaten visar på att legeringen, både före och efter printing, till största del består av martensit med en låg mängd restaustenit. Mängden primärkarbider är relativt låg och har klassifiserats som typen MC (V-rik) och/eller M6C (Mo- rik). Den kvarstående restausteniten kan möjligen förklaras av segringen av ingående legeringsämnen där kolhalten är en dominerande faktor som sänker MS-temperaturen. Detta gör att restaustenit förekommer trots den höga kylhastigheten som varierar mellan 103 och 108 [K/s] i SLM.

Page generated in 0.1562 seconds