• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 36
  • 15
  • 14
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 32
  • 31
  • 27
  • 24
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

THE DEVELOPMENT OF CHEMI-SELECTIVE SENSORS TO DETECT VOLATILE ORGANIC COMPOUNDS AND FLAMMABLE REFRIGERANTS

Nikhil Felix Carneiro (12879038) 16 June 2022 (has links)
<p> </p> <p>Gas sensors have many applications. Volatile organic compound (VOC) sensors are used for monitoring air quality in homes and office spaces, as well as monitoring manufacturing environments where a wide variety of VOCs can be produced. These gases can include formaldehyde, which can be toxic to humans at concentrations as low as 1 ppm. Other applications for gas sensors include flammable refrigerant detection. With the move towards developing more environmentally friendly appliances, many companies have started to use refrigerants such as R600a (isobutane) and R32 (difluoromethane), which have a much lower global warming potential (GWP) than their predecessors, such as R134a and R410a. While this move is beneficial for the environment, steps to ensure their safe usage have not been widely implemented to date. Therefore, sensors to detect VOCs at or below exposure limits, as well as flammable refrigerants at or below lower flammability limits (LFL), should be developed to ensure undue hazards are identified and mitigated. </p>
132

Photovoltaic and gas sensing applications of transitional metal nanocomposites of poly(3-hexylthiophene)-titanium dioxide

Maake, Popoti Jacqueline January 2021 (has links)
>Magister Scientiae - MSc / This thesis starts with the reviewing of studies on the loading of noble metals and nanostructured metal oxides into bulk heterojunction organic solar cell device architectures. The reviews focused on the innovative developments in the use of various fullerene derivatives as electron acceptors in organic solar cells. It additionally reflected on the effect of metallic nanoparticles (NPs), such as gold (Au) and silver (Ag), on the performance of organic solar cells. Besides the metallic NPs, the effect of metal oxide nanoparticle loading, e.g. CuO, ZnO and TiO2, on the organic solar cell performance, and the use of noble metals doped TiO2 on the gas sensing application were reviewed. / 2024
133

Entwicklung eines Verfahrens zur Mustererkennung für die Analyse von Gasen mittels Impedanzspektroskopie

Li, Fei 12 February 2019 (has links)
1. Zielstellung der Arbeit war die Entwicklung von Musterkennungsmethoden zur automatischen Klassifizierung von Gasen. Um dieses Ziel zu erreichen, wurde die Reduktionsmethode Parameterabschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) und eine Committee machine (CM) zur Klassifikation entwickelt. 2. Mittels PEDOT:PSS-Sensoren wurden mit Hilfe der Impedanzspektroskopie NH3 und NO2 in unterschiedlichen Konzentrationen gemessen. Die aufgenommenen Messdaten wurden durch die ASA-PE, die Komplexe Haupt-komponentenanalyse (CPCA) und die Discriminant analyses via Support Vector (SVDA) reduziert. 3. Der Vergleich der Merkmalsextraktionsmethoden zeigt: Die in dieser Arbeit neu entwickelte Methode ASA-PE liefert im Vergleich dazu ein sicheres Segmentierungs-Ergebnis. 4. Der Vergleich zwischen ASA-PE und ZView zeigt, dass die ASA-PE eine sichere Methode für die automatisierte Gasanalyse ist. Aber bei zweidimensionalen Merkmalen gibt es einen Bereich, in dem sich eine gemeinsame Häufung einstellt, welche zu einer Irritation in der Auswertung von CPCA und SVDA führen kann. Dieses Problem kann durch eine Erhöhung der Anzahl von Merkmalen gelöst werden. 5. Es wurden sechs die Klassifikationsmethoden: Abstandsgewichtete k-Nächste-Nachbarn-Klassifikation (DW-kNN), das mehrlagige Perzeptron (MLP), Support Vector Machine (SVM), CM, CM ohne MLP und CM mit Abstandskontrolle und AAi-Filter untersucht und miteinander verglichen. Um die Klassifikationsmethoden anzulernen wurden alle Merkmalsreduktions-ergebnisse der CPCA, SVDA und der ASA-PE in Trainings- und Testdaten eingeteilt. 6. Die Ergebnisse zeigen, dass die Kombination aus One-Against-All-SVM (OAA-SVM) und ASA-PE die besten Erkennungsraten liefert. Bei 200 Trainingsdatensätzen wird eine Erkennungsrate von bis zu 99.5% erzielt. Durch diese Kombination können jedoch nur 8 Typen ohne Identifikation von unbekannten Typen ermittelt werden. 7. Wenn das MLP aus CM entfernt wird, werden die Resultate von CM leicht verbessert. Mit Hilfe von 6-Sigma zeigt CM ohne MLP eine gute Erkennungsrate für unbekannte Gase und gleichzeitig bleibt die Erkennungsrate auf einem befriedigenden Niveau. 8. Die Streuung der ASA-PE führt zu einer schlechten Abgrenzung zwischen bekannten und unbekannten Gasen. Stattdessen zeigt die Kombination von CM ohne MLP und CPCA in diesem Fall eine gute Abgrenzung.:Abstract II Danksagung III Inhaltsverzeichnis IV Abkürzungen VII 1 Einführung 1.1 Einleitung 1.2 Entwicklungen bei Gassensoren 1.2.1 Fortschritte bei Material und Messmethode 1.2.2 Fortschritte bei Mustererkennungsmethoden 1.3 Motivation 1.4 Struktur der Arbeit 2 Verfahren zur Gasanalyse 2.1 Messverfahren 2.1.1 Impedanzspektroskopie als Detektionsmethode 2.1.1.1 Definition der Impedanz 2.1.1.2 Bauelemente des elektrischen Modells 2.1.2 Optische Verfahren 2.1.3 Elektrochemische Verfahren 2.2 Merkmalerkennung 2.2.1 Merkmalsreduktion 2.2.1.1 Komplexe Hauptkomponentenanalyse (Engl. Complex Principal Component Analysis) 2.2.1.2 Kernel-Diskriminanzanalyse mittels Support Vektoren (engl. kernel Discriminant Analysis via Support Vector) 2.2.2 Klassifikationsverfahren 2.2.2.1 Abstands-gewichtete k-Nächste-Nachbarn-Klassifikation (engl. Distance weighted k-Nearest-Neighbor-Algorithms, DW-kNN) 2.2.2.2 Mehrlagiges Perzeptron (MLP) 2.2.2.3 Support Vektor Maschine (SVM) 3 Eigene Mustererkennungsverfahren 3.1 Parameterschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) 3.1.1 Allgemeines Impedanzspektroskopiemodell eines Gassensors 3.1.2 Parameterschätzung 3.1.3 Die Optimierungsverfahren 3.2 Committee machine 4 Anwendungsbeispiel 4.1 Experiment mit einem Gassensor aus PEDOT:PSS 4.1.1 Sensoraufbau und vereinfachtes Sensormodell 4.2 Experimentelle Ergebnisse 4.2.1 Messaufbau und Versuchsdurchführung 4.2.2 Vorbereitung zur Messung 4.2.3 Durchführung der Messung 4.2.4 Fehlerbetrachtung 4.2.5 Messergebnisse des Gassensors 4.3 Ergebnisse der Merkmalreduktion 4.3.1 CPCA und SVDA 4.3.2 Parameterschätzung mittels Adaptive-Simulated-Annealing (ASA-PE) 4.4 Ergebnisse der Klassifikationen 4.4.1 Ergebnisse der Gasbestimmung mittels Trainingssatz und Testsatz 4.4.1.1 DW-kNN 4.4.1.2 MLP 4.4.1.3 OAO-SVM 4.4.1.4 OAA-SVM 4.4.1.5 Committee machine 4.4.1.6 CM ohne MLP 4.4.1.7 CM mit AAi-Filter 4.4.2 Abhängigkeit der Klassifikationsergebnisse von der Anzahl der Trainingsdaten 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick Abbildungsverzeichnis Formelverzeichnis Literaturverzeichnis
134

Development of Graphene Based Gas Sensors

Gautam, Madhav 05 September 2013 (has links)
No description available.
135

Modeling and Spray Pyrolysis Processing of Mixed Metal Oxide Nano-Composite Gas Sensor Films

Khatami, Seyed Mohammad Navid 01 January 2014 (has links)
The role of sensor technology is obvious in improvement and optimization of many industrial processes. The sensor films, which are considered the core of chemical sensors, have the capability to detect the presence and concentration of a specific chemical substance. Such sensor films achieve selectivity by detecting the interaction of the specific chemical substance with the sensor material through selective binding, adsorption and permeation of analyte. This research focuses on development and verification of a comprehensive mathematical model of mixed metal oxide thin film growth using spray pyrolysis technique (SPT). An experimental setup is used to synthesize mixed metal oxide films on a heated substrate. The films are analyzed using a variety of characterization tools. The results are used to validate the mathematical model. There are three main stages to achieve this goal: 1) A Lagrangian-Eulerian method is applied to develop a CFD model of atomizing multi-component solution. The model predicts droplet characteristics in flight, such as spatial distribution of droplet size and concentration. 2) Upon reaching the droplets on the substrate, a mathematical model of multi-phase transport and chemical reaction phenomena in a single droplet is developed and used to predict the deposition of thin film. The various stages of droplet morphology associated with surface energy and evaporation are predicted. 3) The processed films are characterized for morphology and chemical composition (SEM, XPS) and the data are used to validate the models as well as investigate the influence of process parameters on the structural characteristics of mixed metal oxide films. The structural characteristics are investigated of nano structured thin films comprising of ZnO, SnO2, ZnO+In2O3 and SnO2+In2O3 composites. The model adequately predicts the size distribution and film thickness when the nanocrystals are well-structured at the controlled temperature and concentration.
136

Studies on Effect of Defect Doping and Additives on Cr2O3 and SnO2 Based Metal Oxide Semiconductor Gas Sensors

Kamble, Vinayak Bhanudas January 2014 (has links) (PDF)
Metal Oxide (MO)semiconductors are one of the most widely used materials in commercial gas sensor devices. The basic principle of chemoresistive gas sensor operation stems on the high sensitivity of electrical resistance to ambient gaseous conditions. Depending on whether the oxide is "p type" or "n type", the resistance increases (or decrease), when placed in atmosphere containing reducing (or oxidizing) gases. The study of conductometric metal oxide semiconductor gas sensors has dual importance in view of their technological device applications and understanding fundamental MO-gas interactions. Metal oxides based sensors offer high thermal, mechanical and chemical stability. A large number of MOs show good sensitivities to various gases like CO, NOX, SOX, NH3, alcohols and other Volatile Organic Compounds (VOCs). VOCs are very common hazardous pollutants in the environment. Gas sensors are in great demand for their various applications such as food quality control, fermentation industries, road safety, defence, environmental monitoring and other chemical industries. The aim of the study is to explore the possibility of advancements in semiconducting MO based gas sensor devices through tuning microstructural parameters along with chemical dopants or additives. And further to investigate the underlying mechanism of conductometric MO gas sensors. The novel synthesis method employed is based on the solution combustion method coupled with ultrasonically nebulized spray pyrolysis technique. The well studied SnO2 and relatively unexplored Cr2O3 oxide systems are selected for the study. The non-equilibrium processing conditions result in unique microstructure and defect chemistry. In addition, using this technique MO - Reduced Graphene Oxide (RGO) nanocomposite films has also been fabricated and its application to room temperature gas sensor devices is demonstrated. The thesis comprises of seven chapters. the following section describe the summery of individual chapters. The Chapter 1 describes the introduction and background literature of this technology. A brief review of developments in gas sensor technology so far has been enlisted. This chapter also gives a glimpse of applications of MO semiconductors based sensors. The underlying mechanism involved in the sensing reaction and the primary factors influencing the response of a gas sensor device are enlisted. Further in the later part of the chapter focused the material selection criteria, effect of additives/dopants and future prospects of the technology. The end of this chapter highlights the objective and scope of the work in this dissertation. In the Chapter 2 the the materials selection, characterization techniques and particularly the experimental setups used are elaborated. This includes the deposition method used, which is developed in our group and the the in house built gas sensing system including its working principles and various issues have been addressed. The Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) is a novel deposition method devised, which is a combination of conventional spray pyrolysis and solution combustion technique. Spray pyrolysis is versatile, economic and simple technique, which can be used for large area deposition of porous films. The intention is to exploit the exothermicity of combustion reaction in order to have high crystallinity, smaller crystallite size with high surface area, which are extremely important in gas sensor design and its efficiency. Further the gas sensing system and its operation are discussed in detail including the advantages of vertical sensing chamber geometry, wider analyte concentration range (ppm to percentage) obtained through vapor pressure data and simultaneous multi sensor characterization allowing better comparison. Here in this work, Chromium oxide (Cr2O3) and Tin oxide (SnO2) are selected as gas sensing materials for this work as a p-type and n-type metal oxide semiconductors respectively. Nevertheless Cr2O3 is a less explored gas sensing material as compared to SnO2, which is also being used in many commercially available gas sensor devices. Thus, studying and comparing gas sensing properties of a relatively novel and a well established material would justify the potential of the novel deposition technique developed. In Chapter 3, the effect of exothermic reaction between oxidizer and fuel, on the morphology, surface stoichiometry and observed gas sensing properties of Cr2O3 thin films deposited by UNSPACM, is studied. An elaborative study on the structural, morphological and surface stoichiometry of chromium oxide films is undertaken. Various deposition parameters have been optimized. An extensive and systematic gas sensing study is carried out on Cr2O3 films deposited, to achieve unique microstructure. The crystallinity and microstructure are investigated by varying the deposition conditions. Further, the effect of annealing in oxygen gas atmospheres on the films was also investigated. The gas sensing properties are studied for various VOCs, in temperature range 200 - 375 oC. The possible sensing mechanism and surface chemical processes involved in ethanol sensing, based on empirical results, are discussed. In chapter 4, the effect of 1% Pt doping on gas sensing properties of Cr2O3 thin films prepared by UNSPACM, is investigated. The chemical analysis is done using x-ray photoelectron spectroscopy to find the chemical state of Pt and quantification is done. The gas sensing is done towards gases like NO2, Methane and Ethanol. The enhancement in sensitivity and remarkable reduction in response as well as recovery times have been modeled with kinetic response analysis to study the variation with temperature as well as concentration. Further the analysis of observations and model fittings is discussed. The Chapter 5 deals with the defects induced ferromagnetism and gas sensing studies SnO2 nanoparticles prepared by solution combustion method. The structural, chemical analysis of as-synthesized and annealed SnO2 nanoparticles reveal gradual reduction in defect concentration of as-prepared SnO2. The findings of various characterization techniques along with optical absorption and magnetic studies to investigate the defect structure of the material are presented. As defects play crucial role in gas sensing properties of the metal oxide material, the defect induced room temperature ferromagnetism in undoped SnO2 has been used as a potential tool to probe the evidence of the defects. Finally a correlation is established between observed room temperature ferromagnetism and gas sensing studies and primary role of defects in gas sensing mechanism over microstructure is realized . The Chapter 6 presents the deposition of SnO2 thin films by UNSPACM method on glass substrates for gas sensing application. The readiness of UNSPACM in making sensor materials with unform dopant distribution is demonstrated in order to improve the sensor performance in terms of response and selectivity. The chemical composition, film morphology and gas sensing studies are reported. The SnO2 is doped with Cr and Pt to enhance the sensing properties of the material. The doped Oxide films are found to show enhancement in sensitivity and improve the selectivity of the films towards specific gases like NO2 and CO. Further in Chapter 7 an effort has been made to overcome the problem of high operating temperature of metal oxide gas sensors through use of Reduced Graphene Oxide (RGO) and metal oxide nanocomposite films. Although RGO shows room temperature response towards many toxic and hazardous gases but it exhibits poor sensor signal recovery. This has been successfully solved by making nanohybrids of RGO and SnO2. It not only improves the sensor signal kinetics but it enhances the sensitivity also. Thus this chapter endeavors towards low power consumption gas sensing devices. The key findings and future aspects are summarized in the Chapter 8.
137

Integrated Gas Sensor - Studies On Sensing Film Deposition, Microheater Design And Fabrication, Interface Electronics Design And Testing

Velmathi, G 03 1900 (has links) (PDF)
Recently, there has been an increasing interest in the electronics world for those aspects related to semiconducting gas sensor (SGS) materials. In view of the increasingly strict legal limits for pollutant gas emissions, there is a great interest in developing high performance gas sensors for applications such as controlling air pollution and exhaust gases in automotive industry. In this way, semiconductor gas sensors offer good advantages with respect to other gas sensor devices, due to their simple implementation, low cost and good stability and sensitivity. The first part of the thesis is dedicated to the synthesis, film structural and sensitivity study of the Tin Oxide film deposited by RF sputtering, doped with noble metal Palladium (Pd). Effects on the Gas Sensitivity due to the deposition parameters like thickness of the film, Substrate temperature, Ar /O2 ratio of the sputtering environment, annealing temperature and duration and doping metal weight % into the Tin Oxide films are studied and the results are shown in detail. The sensitivity and selectivity of the gas sensing film is decided by the operating temperature i.e. the temperature of the gas sensing film while it is in the target gas ambience, Microheaters happen to be the very important component in the gas sensor especially with wide band gap semiconducting metal oxides films such as tin oxide, gallium oxide or indium oxides. Other than gas sensing microheater also finds applications in many areas like thermal dip pen nanolithography, polymerase chain reaction (PCR), fluid pumping with bubbles, in vitro fertilization etc. So in this report due importance was given for the design and fabrication of the microheater. Microheaters are the most power consuming element of the integrated Gas sensors. This is also an important reason for the extensive microheater work in this research. Six different heater patterns were simulated by considering low power and temperature uniformity as an important goals. Among them the best three patterns named Double spiral, “Fan” Shape and “S” shape were chosen for fabrication and both thermal and electrical characterization results of them were presented in detail in the Microheater section of the thesis. It is believed that the intelligent design and integration of the electronic circuitry (for drive, signal conditioning/compensation, and read-out) with the gas sensing element can mitigate some of the significant issues inherent in solid-state gas sensors, such as strong temperature and humidity dependence, signal drift, aging, poisoning, and weak selectivity. The sensitivity of the gas sensors which has been indicated as the dynamic change of resistance in wide range should be read out properly. Towards this aim a low cast high efficient readout circuit is designed and implemented. Temperature monitoring and controlling is a key phenomenon in the metal Oxide based gas sensors since the selectivity mainly depends on the operating temperature of the sensing film. So focus was also shown on the design and implementation of the temperature monitoring and control unit, which been presented in the last part of this thesis.
138

Síntese de materiais orgânicos conjugados com baixa Egap para aplicação em células solares, magnetorresistores e narizes eletrônicos / Synthesis of organic conjugated materials with low bandgap for application in solar cells, magnetoresistors and electronic noses

Cordeiro, Juliana Ribeiro 17 September 2014 (has links)
Os objetivos do presente trabalho consistem na síntese de dois polímeros - poli(2,1,3-benzotiadiazol-4,7-ilenovinileno-alt-9,9-n-dioctil-2,7-fluorenilenovinileno) (PBTDV-alt-PDO27FV) e poli[4,7-(2,1,3-benzotiadiazolileno)-alt-(2,5-dioctilóxi-1,4- fenilenovinileno)] (PBTDV-alt-PDOPPV) - cinco oligômeros - 4,7-bis(2-(9,9-n-dioctil-9H-fluoren-2-il)vinil)2,1,3-benzotiadiazol (FBF); 2,7-bis(2-(2,1,3-benzotiadiazol-4-il)vinil)9,9-n-dioctil-9H-fluoreno (BFB); 4-(2-(9,9-n-dioctil-9H-fluoren-2-il)vinil)2,1,3-benzotiadiazol (FB); 1,2-bis(9,9-n-dioctil-9H-fluoren)2-vinileno (FF) e 2,2\'-(2,2\'-(9,9-n-dioctil-9H-fluoreno)2,7-bis(vinileno)bis(9,9-n-dioctil-9H-fluoreno) (FFF) - e três small molecules - 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(6-fluoro-4-(5\'-hexil-[2\'-tiofeno-2\'-tiazol]-5-il)benzo[c][1,2,5]tiadiazol (G37FBT); 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(6-fluoro-4-(2\'-isobutil-[5\',2\'-ditiazol])-5-il)benzo[c][1,2,5]tiadiazol (J1) e 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(5\'-hexil-[2,2\'-bitiofeno]-5- bis(il)benzo[c][1,2,5]tiadiazol) (J2) - seguida da aplicação desses materiais em dispositivos fotovoltaicos e magnetorresistivos e em sensores de gás. Os polímeros e oligômeros preparados são derivados de poli(p-fenilenovinileno) e contêm unidades de fluoreno e/ou 2,1,3-benzotiadiazol, tendo sido empregada, na etapa final de cada síntese, reação de Wittig visando ao acoplamento e à formação das duplas vinilênicas. As small molecules, preparadas por meio de sucessivas formações de organo-estananas e reações de Stille, também foram sintetizadas com sucesso e em rendimentos apreciáveis. A espécie J2 não foi preparada com sucesso, obtendo-se, em contrapartida, um análogo dessa molécula, que foi devidamente isolado e caracterizado. No que tange à aplicação dos materiais em dispositivos fotovoltaicos, os resultados até então obtidos mostraram-se inconclusivos, sendo digno de nota, no entanto, que o estudo continua sendo conduzido por colaboradores. O trabalho de aplicação dos materiais em dispositivos magnetorresistivos apresentou resultados interessantes para os oligômeros FBF, BFB, FFF e FF, visto que dispositivos fabricados a partir das referidas espécies mostraram variação em seus valores de corrente elétrica quando submetidos a campo magnético de 200 mT. Por fim, foram desenvolvidos narizes eletrônicos com duas finalidades distintas: (a) identificação de diferentes espécies de madeira de interesse ambiental e (b) estudo da influência da atividade física no indivíduo por meio da análise do suor. Os sensores de gás foram preparados por meio da deposição de finos filmes de materiais orgânicos conjugados dopados sobre a superfície de eletrodos interdigitados. No estudo acerca da identificação de espécies de madeira, a análise de leave-one-out revelou 100 % de taxa de acerto na diferenciação entre as espécies angelim, cedro-rosa, imbuia e perobinha. O estudo da influência da atividade física no indivíduo também se mostrou promissor na medida em que identificou os diferentes estágios do exercício físico com taxa de acerto de 93 %, também definida pela técnica estatística de leave-one-out. / The present work consists on the synthesis of two polymers - poly(2,1,3- benzothiadiazole-4,7-ylenevinylene-alt-9,9-n-dioctyl-2,7-fluorenylenevinylene) (PBTDV-alt-PDO27FV) and poly[4,7-(2,1,3-benzothiadiazole-ylene)-alt-(2,5-dioctyloxy-1,4-phenylenevinylene)] (PBTDV-alt-PDOPPV) - five oligomers - 4,7-bis(2-(9,9-n-dioctyl- 9H-fluorene-2-yl)vinyl)2,1,3-benzothiadiazole (FBF); 2,7-bis(2-(2,1,3- benzothiadiazole-4-yl)vinyl)9,9-n-dioctyl-9H-fluorene (BFB); 4-(2-(9,9-n-dioctyl-9H-fluorene-2-yl)vinyl)2,1,3-benzothiadiazole (FB); 1,2-bis(9,9-n-dioctyl-9H-fluorene)2- vinylene (FF) and 2,2\'-(2,2\'-(9,9-n-dioctyl-9H-fluorene)2,7-bis(vinylene)bis(9,9-n-dioctyl-9H-fluorene) (FFF) - and three small molecules - 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(6-fluoro-4-(5\'-hexyl-[2\'-thiophene-2\'- thiazole]-5-yl)benzo[c][1,2,5]thiadiazole (G37FBT); 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(6-fluoro-4-(2\'-isobutyl-[5\',2\'-dithiazole]-5-yl)benzo[c][1,2,5]thiadiazole (J1) and 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(5\'-hexyl-[2,2-bithiophene]-5-bis(yl)benzo[c][1,2,5]thiadiazole) (J2) - followed by the application of such materials in organic photovoltaics (OPV), magnetoresistive devices and gas sensors. The polymers and oligomers are all poli(p-phenylenevinylene)s derivatives containing 2,1,3-benzothiadiazole and/or substituted fluorene units in the main chain. Those materials\' preparation comprises a coupling Wittig reaction as the key step, through which the vinylenic bonds are formed. The small molecules mentioned above were synthesized by successive organostannane preparations followed by cross-coupling Stille reactions, leading to the target-compounds in considerably high yields. Although the route is a very useful methodology for synthesizing organic conjugated small molecules, J2 was not successfully prepared. The reaction led to a J2 analogue instead, that was properly isolated and characterized. The application of the cited materials in organic photovoltaics (OPVs) is still in progress, since the study has shown inconclusive results so far. The study of the organic magnetoresistive properties of the synthesized materials has led to interesting results for the oligomers FBF, BFB, FFF and FF. The devices containing those compounds in their active layers presented considerable variations in their electric current values when submitted to a magnetic field of 150 mT magnitude. Finally, electronic noses for two different applications were developed: (a) the identification of wood species that can be easily mistaken and (b) the study of exercise physiology through analyses of sweat samples. The gas sensors were prepared by the deposition of doped organic conjugated materials thin films onto the surface of intedigitated electrodes. The study on the differentiation of several species of wood showed 100 % rate of hits determined by leave-one-out statistics analysis. The study on the exercise physiology was also promising since it allowed the identification of the three different stages of the physical exercise with a 93 % rate of hits, also determined by leave-one-out methods. Thus, both studies suggest that the electronic nose can be a powerful tool to study many different targets in which the release of volatile compounds is involved
139

Adaptation d'un nez électronique pour le contrôle de la concentration et de l'humidité d'une atmosphère chargée en huile essentielle destinée à un effet thérapeutique médical / Adaptation of an electronic nose to control concentration and humidity of an essential oil charged atmosphere for medical therapeutic effect

Sambemana, Herizo 20 June 2012 (has links)
De nombreuses études récentes, basées sur des indicateurs physiologiques ou psychologiques, mettent en évidence les pouvoirs stimulants ou apaisants des odeurs sur des personnes souffrant de déficiences neurosensorielles. Or l'évaluation quantitative (rigoureuse, scientifique) des effets d'une stimulation olfactive à base d'huiles essentielles, nécessite de pouvoir contrôler de manière exacte et automatique la quantité de substances actives présentes dans l'air inhalé par le patient. Ce travail concerne la conception et la réalisation d'un système « diffuseur/détecteur » de gaz capable de générer des doses contrôlées d'huile essentielle dans l'atmosphère conditionnée d'une salle d'expérimentation. La diffusion est basée sur le contrôle de l'air bullant dans l'huile essentielle liquide (pin, lavande, orange douce), dont l'analyse physico-chimique et sensorielle nous a aidés à choisir leur domaine de concentrations. La détection des substances volatilisées est obtenue à l'aide d'un réseau de capteurs à oxydes métalliques commerciaux. L'analyse de signaux de réponse des capteurs aux différentes concentrations de l'huile de pin, après un filtrage numérique adéquat, a révélé une bonne sensibilité croisée des capteurs tant au niveau de la réponse temporelle qu'au niveau de sa courbe dérivée. Ainsi, nous avons pu extraire plusieurs paramètres représentatifs des réponses, habituellement utilisés dans la littérature, et surtout de nouveaux paramètres, caractéristiques de la phase dynamique, pour former la base d'apprentissage. L'analyse à l'aide de méthodes de classification (non supervisée puis supervisée) nous a permis de mettre en évidence la meilleure combinaison de paramètres pour une identification rapide et fiable de concentrations voisines. L'application aux deux autres huiles essentielle a été concluante, nous pouvons envisager de réaliser un prototype pour les essais de validation thérapeutique / Recent clinical studies have demonstrated the stimulating or relaxing effects of odorous stimulation on subjects suffering from neuro-sensoriel deficiencies. These studies concern generally the variation measurement of physiological parameters or psychological indicators in relation with odorous stimuli. To evaluate quantitatively the odorous effects of natural oil stimulations on the subject behavior or his cognitive performance, it is necessary to control automatically and accurately the quantity of the active substances present in the air inhaled by the patient. The aim of this work is to conceive a gas ?diffuser/detector? system to generate fixed concentration of an essential oil in an experimental chamber atmosphere. Diffusion unit is based on the control of the air flow arte bubbling through the liquid oil (pin, lavender, orange), and the range of the employed concentration range is determined after physic-chemical and sensorial analysis. The detection of volatilized substances is obtained using a matrix of commercial metal oxide gas sensors. The study of the sensor responses to different pin oil concentrations showed, after an adequate digital filtering, a good cross sensitivity of the sensors. So, we have extracted from each sensor response, several characteristic parameters, firstly classical ones, and then new ones representing the dynamic phase of the signal response, to create the learning data base. The analysis of these data using pattern recognition methods (non-supervised and then supervised) permitted us to highlight a set of parameters for a reliable and rapid identification of closed diffused oil concentrations. The application of the system with the two other oils was decisive: we can now carry out the realization of a prototype for the therapeutic tests
140

Síntese de materiais orgânicos conjugados com baixa Egap para aplicação em células solares, magnetorresistores e narizes eletrônicos / Synthesis of organic conjugated materials with low bandgap for application in solar cells, magnetoresistors and electronic noses

Juliana Ribeiro Cordeiro 17 September 2014 (has links)
Os objetivos do presente trabalho consistem na síntese de dois polímeros - poli(2,1,3-benzotiadiazol-4,7-ilenovinileno-alt-9,9-n-dioctil-2,7-fluorenilenovinileno) (PBTDV-alt-PDO27FV) e poli[4,7-(2,1,3-benzotiadiazolileno)-alt-(2,5-dioctilóxi-1,4- fenilenovinileno)] (PBTDV-alt-PDOPPV) - cinco oligômeros - 4,7-bis(2-(9,9-n-dioctil-9H-fluoren-2-il)vinil)2,1,3-benzotiadiazol (FBF); 2,7-bis(2-(2,1,3-benzotiadiazol-4-il)vinil)9,9-n-dioctil-9H-fluoreno (BFB); 4-(2-(9,9-n-dioctil-9H-fluoren-2-il)vinil)2,1,3-benzotiadiazol (FB); 1,2-bis(9,9-n-dioctil-9H-fluoren)2-vinileno (FF) e 2,2\'-(2,2\'-(9,9-n-dioctil-9H-fluoreno)2,7-bis(vinileno)bis(9,9-n-dioctil-9H-fluoreno) (FFF) - e três small molecules - 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(6-fluoro-4-(5\'-hexil-[2\'-tiofeno-2\'-tiazol]-5-il)benzo[c][1,2,5]tiadiazol (G37FBT); 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(6-fluoro-4-(2\'-isobutil-[5\',2\'-ditiazol])-5-il)benzo[c][1,2,5]tiadiazol (J1) e 7,7\'-(4,4-bis(2-etil-hexil)-4H-silolo[3,2-b-:4,5-b\']ditiofen-2,6-diil)bis(5\'-hexil-[2,2\'-bitiofeno]-5- bis(il)benzo[c][1,2,5]tiadiazol) (J2) - seguida da aplicação desses materiais em dispositivos fotovoltaicos e magnetorresistivos e em sensores de gás. Os polímeros e oligômeros preparados são derivados de poli(p-fenilenovinileno) e contêm unidades de fluoreno e/ou 2,1,3-benzotiadiazol, tendo sido empregada, na etapa final de cada síntese, reação de Wittig visando ao acoplamento e à formação das duplas vinilênicas. As small molecules, preparadas por meio de sucessivas formações de organo-estananas e reações de Stille, também foram sintetizadas com sucesso e em rendimentos apreciáveis. A espécie J2 não foi preparada com sucesso, obtendo-se, em contrapartida, um análogo dessa molécula, que foi devidamente isolado e caracterizado. No que tange à aplicação dos materiais em dispositivos fotovoltaicos, os resultados até então obtidos mostraram-se inconclusivos, sendo digno de nota, no entanto, que o estudo continua sendo conduzido por colaboradores. O trabalho de aplicação dos materiais em dispositivos magnetorresistivos apresentou resultados interessantes para os oligômeros FBF, BFB, FFF e FF, visto que dispositivos fabricados a partir das referidas espécies mostraram variação em seus valores de corrente elétrica quando submetidos a campo magnético de 200 mT. Por fim, foram desenvolvidos narizes eletrônicos com duas finalidades distintas: (a) identificação de diferentes espécies de madeira de interesse ambiental e (b) estudo da influência da atividade física no indivíduo por meio da análise do suor. Os sensores de gás foram preparados por meio da deposição de finos filmes de materiais orgânicos conjugados dopados sobre a superfície de eletrodos interdigitados. No estudo acerca da identificação de espécies de madeira, a análise de leave-one-out revelou 100 % de taxa de acerto na diferenciação entre as espécies angelim, cedro-rosa, imbuia e perobinha. O estudo da influência da atividade física no indivíduo também se mostrou promissor na medida em que identificou os diferentes estágios do exercício físico com taxa de acerto de 93 %, também definida pela técnica estatística de leave-one-out. / The present work consists on the synthesis of two polymers - poly(2,1,3- benzothiadiazole-4,7-ylenevinylene-alt-9,9-n-dioctyl-2,7-fluorenylenevinylene) (PBTDV-alt-PDO27FV) and poly[4,7-(2,1,3-benzothiadiazole-ylene)-alt-(2,5-dioctyloxy-1,4-phenylenevinylene)] (PBTDV-alt-PDOPPV) - five oligomers - 4,7-bis(2-(9,9-n-dioctyl- 9H-fluorene-2-yl)vinyl)2,1,3-benzothiadiazole (FBF); 2,7-bis(2-(2,1,3- benzothiadiazole-4-yl)vinyl)9,9-n-dioctyl-9H-fluorene (BFB); 4-(2-(9,9-n-dioctyl-9H-fluorene-2-yl)vinyl)2,1,3-benzothiadiazole (FB); 1,2-bis(9,9-n-dioctyl-9H-fluorene)2- vinylene (FF) and 2,2\'-(2,2\'-(9,9-n-dioctyl-9H-fluorene)2,7-bis(vinylene)bis(9,9-n-dioctyl-9H-fluorene) (FFF) - and three small molecules - 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(6-fluoro-4-(5\'-hexyl-[2\'-thiophene-2\'- thiazole]-5-yl)benzo[c][1,2,5]thiadiazole (G37FBT); 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(6-fluoro-4-(2\'-isobutyl-[5\',2\'-dithiazole]-5-yl)benzo[c][1,2,5]thiadiazole (J1) and 7,7\'-(4,4-bis(2-ethyl-hexyl)-4H-silolo[3,2-b-:4,5-b\']dithiophene-2,6-diyl)bis(5\'-hexyl-[2,2-bithiophene]-5-bis(yl)benzo[c][1,2,5]thiadiazole) (J2) - followed by the application of such materials in organic photovoltaics (OPV), magnetoresistive devices and gas sensors. The polymers and oligomers are all poli(p-phenylenevinylene)s derivatives containing 2,1,3-benzothiadiazole and/or substituted fluorene units in the main chain. Those materials\' preparation comprises a coupling Wittig reaction as the key step, through which the vinylenic bonds are formed. The small molecules mentioned above were synthesized by successive organostannane preparations followed by cross-coupling Stille reactions, leading to the target-compounds in considerably high yields. Although the route is a very useful methodology for synthesizing organic conjugated small molecules, J2 was not successfully prepared. The reaction led to a J2 analogue instead, that was properly isolated and characterized. The application of the cited materials in organic photovoltaics (OPVs) is still in progress, since the study has shown inconclusive results so far. The study of the organic magnetoresistive properties of the synthesized materials has led to interesting results for the oligomers FBF, BFB, FFF and FF. The devices containing those compounds in their active layers presented considerable variations in their electric current values when submitted to a magnetic field of 150 mT magnitude. Finally, electronic noses for two different applications were developed: (a) the identification of wood species that can be easily mistaken and (b) the study of exercise physiology through analyses of sweat samples. The gas sensors were prepared by the deposition of doped organic conjugated materials thin films onto the surface of intedigitated electrodes. The study on the differentiation of several species of wood showed 100 % rate of hits determined by leave-one-out statistics analysis. The study on the exercise physiology was also promising since it allowed the identification of the three different stages of the physical exercise with a 93 % rate of hits, also determined by leave-one-out methods. Thus, both studies suggest that the electronic nose can be a powerful tool to study many different targets in which the release of volatile compounds is involved

Page generated in 0.1429 seconds