Spelling suggestions: "subject:"sas sorption"" "subject:"suas sorption""
1 |
Deactivation of PtH-ZSM-5 bifunctional catalysts by coke formation during benzene alkylation with ethaneChua, Li Min January 2010 (has links)
The alkylation of benzene with ethane was studied at 370 oC over two Pt-containing ZSM-5 catalysts with SiO2/Al2O3 ratios of 30 and 80. While the benzene and ethane conversion decreased with time-on-stream for the PtH-ZSM-5(30) catalyst, the PtH-ZSM-5(80) catalyst demonstrated a stable performance. The deactivation of the PtH-ZSM-5(30) catalyst was found to be more significant, when compared to the PtH-ZSM-5(80) catalyst as a result of differences in the formation of coke. Results from gas sorption and x-ray diffraction experiments showed that coke is preferentially formed within the channel segments of the PtH-ZSM-5(30) catalyst as opposed to coke deposition on the outside surface of the PtH-ZSM-5(80) crystallites, subsequently blocking entrance to the zeolite channels. <br /> The location of the coke deposition was found to affect the product selectivity of the two PtH-ZSM-5 catalysts. The accessibility functions, derived from nitrogen and argon sorption data, suggested that, with prolonged time-on-stream, the coke molecules build up from the middle of the zeolite crystallites outwards towards the surface, as the reaction was carried out over the PtH-ZSM-5(30) catalyst. Partial blockage of the internal pore structure of the PtH-ZSM-5(30) catalyst decreased the diffusion length within the crystallites. In contrast to the typical effect of coking, where the selectivity of para- isomers would be enhanced with coke deposition, the effect of the reduction in the diffusion length of the PtH-ZSM-5(30) crystallites is consistent with the decreasing para-selectivity of the diethylbenzene (DEB) isomers with time-on-stream. <br /> n investigation of the causes of coke locations was conducted, and the results suggested that, the spatial distribution of Pt metal was responsible for the different locations of coke observed. Surface reactions initiated coking in the intercrystalline region of the PtH-ZSM-5(80) catalyst, as the Pt particles on the surface of the PtH-ZSM-5(80) crystallites increased the difficulty of access for reactants to the interior of the crystallites. Within the PtH-ZSM-5(30) catalyst, ethane dehydrogenation and benzene alkylation took place in the micropore network as a result of preferential intracrystalline deposition of Pt metal. Further conversions on the active sites within the PtH-ZSM-5(30) crystallites thus lead intracrystalline coking.
|
2 |
Thermodynamic and kinetic processes associated with CO2-sequestration and CO2-enhanced coalbed methane production from unminable coal seamsBusch, Andreas. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2005--Aachen.
|
3 |
Metal Organic Frameworks: Explorations and Design Strategies for MOF SynthesisAbdulHalim, Rasha 27 November 2016 (has links)
Metal-Organic Frameworks (MOFs) represent an emerging new class of functional crystalline solid-state materials. In the early discovery of this now rapidly growing class of materials significant challenges were often encountered. However, MOFs today, with its vast structural modularity, reflected by the huge library of the available chemical building blocks, and exceptional controlled porosity, stand as the most promising candidate to address many of the overbearing societal challenges pertaining to energy and environmental sustainability.
A variety of design strategies have been enumerated in the literature which rely on the use of predesigned building blocks paving the way towards potentially more predictable structures. The two major design strategies presented in this work are the molecular building block (MBB) and supermolecular building block (SBB) -based approaches for the rationale assembly of functional MOF materials with the desired structural features.
In this context, we targeted two highly connected MOF platforms, namely rht-MOF and shp-MOF. These two MOF platforms are classified based on their topology, defined as the underlying connectivity of their respective net, as edge transitive binodal nets; shp being (4,12)-connected net and rht being (3,24)-connected net. These highly connected nets were deliberately targeted due to the limited number of possible nets for connecting their associated basic building units. Two highly porous materials were designed and successfully constructed; namely Y-shp-MOF-5 and rht-MOF-10. The Y-shp-MOF-5 features a phenomenal water stability with an exquisite behavior when exposed to water, positioning this microporous material as the best adsorbent for moisture control applications. The shp-MOF platform proved to be modular to ligand functionalization and thus imparting significant behavioral changes when hydrophilic and hydrophobic functionalized ligands were introduced on the resultant MOF.
On the other hand, rht-MOF-10 constituting of 24-connected transition metal based-SBB was successfully synthesized and activated using a modified supercritical CO2 drying technique. This allowed access to over 90 % of the total pore volume (1.95cm3/g). High pressure gas sorption measurements of CH4, CO2 and O2 showed that this material has a gravimetric uptake that ranks close to the best materials enlisted for the storage of these corresponding gases.
|
4 |
The Performance of a Thermally Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) for Gas SeparationAlghunaimi, Fahd 05 1900 (has links)
Gas transport properties of PIM-1 (the first ladder polymer with intrinsic microporosity) and TC-PIM-1 (thermally cross-linked PIM-1) at 35°C and different pressures were thoroughly studied. The purpose of this study was to evaluate and compare the performance of the TC-PIM-1 membranes with PIM-1 for natural gas separation. The TC-PIM-1 polymer was prepared by post-modification of PIM-1 at 300°C for a period of two days. Sorption isotherms of seven gases, including N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10, were determined for PIM-1 and TC-PIM-1 using the dual-volume barometric sorption technique at 35°C at different pressures. The sorption isotherms followed the dual-mode sorption model, which is typical for glassy polymers. Moreover, permeability (P) of eight gases, including He, H2, N2, O2, CH4, CO2, C3H8 and n-C4H10, were determined for PIM-1 and TC-PIM-1 at 35°C and 2.0 atm. Furthermore, average diffusion coefficients (D ̅) were calculated from the permeability and solubility data for all tested gases for both polymers. The sorption (S), permeability (P) and average diffusion coefficients (D ̅) for the TC-PIM-1 membrane exhibited lower values than the PIM-1 membrane. However, the TC-PIM-1 membrane showed exceptional gas separation performance. The TC-PIM-1 membrane had a helium (He) permeability of 1218 barrer with He/CH4 and He/N2 ideal selectivities of 27.1 and 23.9 respectively, and carbon dioxide (CO2) permeability of 1088 barrer with CO2/CH4 and CO2/N2 ideal selectivities of 24.2 and 21.3 respectively. Additionally, the TC-PIM-1 membrane showed a hydrogen (H2) permeability of 2452 barrer with an ideal H2/CH4 selectivity of 54.5.
|
5 |
Development of alkaline earth metal-based, metal-organic frameworks for greenhouse gas sorptionMaghsoodpoor, Ali January 2022 (has links)
Metal-organic frameworks (MOFs) constructed from metal atoms connected by organic linkers have received extensive attention for greenhouse gas separation in the past decades. Moreover, their large surface area makes them a promising candidate as adsorbents for gas sorption. This project aims to develop MOFs via different synthesis instructions by utilizing Mg-containing materials, including Commercial MgCO3 and Mesoporous Magnesium Carbonate (Upsalite) as a source of the metal part and four different organic linkers. Water, Ethanol, Methanol, and N, N-dimethylformamide were used as solvents. First, synthesis was performed at room temperature, followed by high temperature using an autoclave and reactor. Then, the successfully synthesized samples were characterized by different characterization methods. These characterization techniques included Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), and Infrared Spectroscopy (IR). Porous properties of the MOFs were tested by gas adsorption techniques, including N2 and CO2 as adsorbate gases. As a result, it was found that synthesized MOFs have a high surface area and porosity to adsorb greenhouse gases and separate CO2 from N2. The highest surface area, N2, and CO2 adsorption amounts were 539 m²/g, 0.32 (mmol/g at 293K,1bar), and 3.31 (mmol/g at 293K,1bar), respectively. CO2 adsorption is approximately ten times N2 adsorption in almost all MOF synthesized samples. To achieve the best result regarding the high amounts of surface area, N2, and CO2 sorption, synthesis at room temperature using Commercial MgCO3, H2dhbq linker, and water solvent was the best approach.
|
6 |
Design of isostructural metal-imidazolate frameworks : application for gas storageMondal, Suvendu Sekhar January 2013 (has links)
The sharply rising level of atmospheric carbon dioxide resulting from anthropogenic emissions is one of the greatest environmental concerns facing our civilization today. Metal-organic frameworks (MOFs) are a new class of materials that constructed by metal-containing nodes bonded to organic bridging ligands. MOFs could serve as an ideal platform for the development of next generation CO2 capture materials owing to their large capacity for the adsorption of gases and their structural and chemical tunability. The ability to rationally select the framework components is expected to allow the affinity of the internal pore surface toward CO2 to be precisely controlled, facilitating materials properties that are optimized for the specific type of CO2 capture to be performed (post-combustion capture, precombustion capture, or oxy-fuel combustion) and potentially even for the specific power plant in which the capture system is to be installed. For this reason, significant effort has been made in recent years in improving the gas separation performance of MOFs and some studies evaluating the prospects of deploying these materials in real-world CO2 capture systems have begun to emerge.
We have developed six new MOFs, denoted as IFPs (IFP-5, -6, -7, -8, -9, -10, IFP = Imidazolate Framework Potsdam) and two hydrogen-bonded molecular building block (MBB, named as 1 and 2 for Zn and Co based, respectively) have been synthesized, characterized and applied for gas storage. The structure of IFP possesses 1D hexagonal channels. Metal centre and the substituent groups of C2 position of the linker protrude into the open channels and determine their accessible diameter. Interestingly, the channel diameters (range : 0.3 to 5.2 Å) for IFP structures are tuned by the metal centre (Zn, Co and Cd) and substituent of C2 position of the imidazolate linker. Moreover hydrogen bonded MBB of 1 and 2 is formed an in situ functionalization of a ligand under solvothermal condition. Two different types of channels are observed for 1 and 2. Materials contain solvent accessible void space. Solvent could be easily removed by under high vacuum. The porous framework has maintained the crystalline integrity even without solvent molecules.
N2, H2, CO2 and CH4 gas sorption isotherms were performed. Gas uptake capacities are comparable with other frameworks. Gas uptake capacity is reduced when the channel diameter is narrow. For example, the channel diameter of IFP-5 (channel diameter: 3.8 Å) is slightly lower than that of IFP-1 (channel diameter: 4.2 Å); hence, the gas uptake capacity and Brunauer-Emmett-Teller (BET) surface area are slightly lower than IFP-1. The selectivity does not depend only on the size of the gas components (kinetic diameter: CO2 3.3 Å, N2 3.6 Å and CH4 3.8 ) but also on the polarizability of the surface and of the gas components. IFP-5 and-6 have the potential applications for the separation of CO2 and CH4 from N2-containing gas mixtures and CO2 and CH4 containing gas mixtures. Gas sorption isotherms of IFP-7, -8, -9, -10 exhibited hysteretic behavior due to flexible alkoxy (e.g., methoxy and ethoxy) substituents. Such phenomenon is a kind of gate effects which is rarely observed in microporous MOFs. IFP-7 (Zn-centred) has a flexible methoxy substituent. This is the first example where a flexible methoxy substituent shows the gate opening behavior in a MOF. Presence of methoxy functional group at the hexagonal channels, IFP-7 acted as molecular gate for N2 gas. Due to polar methoxy group and channel walls, wide hysteretic isotherm was observed during gas uptake. The N2 The estimated BET surface area for 1 is 471 m2 g-1 and the Langmuir surface area is 570 m2 g-1. However, such surface area is slightly higher than azolate-based hydrogen-bonded supramolecular assemblies and also comparable and higher than some hydrogen-bonded porous organic molecules. / Metallorganische Gerüstverbindungen (MOFs) sind eine neue Klasse von porösen Koordinationspolymeren, die aus Metall-Knoten und verbrückenden Liganden bestehen.
MOFs können Gasgemische trennen und Gase speichern. Aufgrund ihres modularen Aufbaus können die MOF-Eigenschaften systematisch variiert werden. Ein wichtiges Ziel für das Design von MOFs ist die Synthese von Materialien, die eine hohe selektive Aufnahmefähigkeit und -kapazität für Kohlenstoffdioxid besitzen.
Im Rahmen der Arbeit ist es gelungen sechs neue MOFs (IFP-5, -6, -7, -8, -9 und -10) zu synthetisieren. Diese MOFs tragen die Kurzbezeichnung IFP. IFP steht als Abkürzung für Imidazolat-Framework-Potsdam (Imidazolat-basierte Gerüstverbindung Potsdam). In diesen IFPs wurde der Metallknoten (Zink, Cobalt, Cadmium) und der Brückenligand, ein 2-substituiertes Imidazolat-amid-imidat, in der Position variiert, um gute und selektive Sorptionseigenschaften für Kohlenstoffdioxid zu erzielen. Von den synthetisierten Verbindungen hat das IFP-5 die besten Sorptionseigenschaften für Kohlenstoffdioxid.
Es konnte weiter gezeigt werden, dass sich die IFP-Struktur bei der Wahl von geeigneten Substituenten 2, wie z.B. Methoxy und Ethoxy auch für das Design von gate-opening (Tür-öffnenden) Effekten eignet. Diese Effekte können wiederum genutzt werden, um selektiv Gasmischungen zu trennen.
Wenn man das 4,5-Dicyano-2-methoxy-imidazol in Gegenwart von Zink- und Cobalt-Salzen unter solvothermalen Bedingungen zur Reaktion bringt, erhält man beispiellose supramolekulare Wasserstoffbrückenbindungen zu einem dreidimensionalen Netzwerk, die mit Kanälen verknüpft sind. Diese Kanäle können von Lösungsmittelmolekülen (Wasser und Dimethylformamid) befreit werden und Gase aufnehmen.
Insgesamt besteht nun die neue MOF-Klasse der Imidazolat-basierten IFPs aus Vertretern. Das Potential der 2-substituierten 4,5-Dicyanoimidazole ist nicht nur auf die Bildung von porösen Koordinationspolymeren beschränkt, sondern kann auch für die Synthese von bisher unbekannten supramolekularen Strukturen genutzt werden.
|
7 |
Thermodynamics and kinetics of sorptionMarais, Charl Guillaume 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--Stellenbosch University, 2008. / Please refer to full text to view abstract.
|
8 |
Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon SeparationAlhazmi, Abdulrahman 05 1900 (has links)
The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.
|
9 |
Meso- und mikroporöse Hochleistungspolymere : Synthese, Analytik und Anwendungen / Meso- and microporous high performance polymers : synthesis, characterisation and applicationWeber, Jens January 2007 (has links)
Die Arbeit beschreibt die Synthese, Charakterisierung und Anwendung von meso- und mikroporösen Hochleistungspolymeren.
Im ersten Teil wird die Synthese von mesoporösen Polybenzimidazol (PBI) auf der Basis einer Templatierungsmethode vorgestellt. Auf der Grundlage kommerzieller Monomere und Silikatnanopartikel sowie eines neuen Vernetzers wurde ein Polymer-Silikat-Hybridmaterial aufgebaut. Das Herauslösen des Silikats mit Ammoniumhydrogendifluorid führt zu mesoporösen Polybenzimidazolen mit spherischen Poren von 9 bis 11 nm Durchmesser. Die Abhängigkeit der beobachteten Porosität vom Massenverhältnis Silikat zu Polymer wurde ebenso untersucht wie die Abhängigkeit der Porosität vom Vernetzergehalt. Die Porosität vollvernetzter Proben zeigt eine lineare Abhängigkeit vom Verhältnis Silikat zu Polymer bis zu einem Grenzwert von 1. Wird der Grenzwert überschritten, ist teilweiser Porenkollaps zu beobachten. Die Abhängigkeit der Porosität vom Vernetzergehalt bei festem Silikatgehalt ist nichtlinear. Oberhalb einer kritischen Vernetzerkonzentration wird eine komplette Replikation der Nanopartikel gefunden. Ist die Vernetzerkonzentration dagegen kleiner als der kritische Wert, so ist der völlige Kollaps einiger Poren bei Stabilität der verbleibenden Poren zu beobachten. Ein komplett unporöses PBI resultiert bei Abwesenheit des Vernetzers.
Die mesoporösen PBI-Netzwerke konnten kontrolliert mit Phosphorsäure beladen werden. Die erhaltenen Addukte wurden auf ihre Protonenleitfähigkeit untersucht. Es kann gezeigt werden, dass die Nutzung der vordefinierten Morphologie im Vergleich zu einem unstrukturierten PBI in höheren Leitfähigkeiten resultiert. Durch die vernetzte Struktur war des Weiteren genügend mechanische Stabilität gegeben, um die Addukte reversibel und bei sehr guten Leitfähigkeiten bis zu Temperaturen von 190°C bei 0% relativer Feuchtigkeit zu untersuchen. Dies ist für unstrukturierte Phosphorsäure/PBI - Addukte aus linearem PBI nicht möglich.
Im zweiten Teil der Arbeit wird die Synthese intrinsisch mikroporöser Polyamide und Polyimide vorgestellt. Das Konzept intrinsisch mikroporöser Polymere konnte damit auf weitere Polymerklassen ausgeweitet werden. Als zentrales, strukturinduzierendes Motiv wurde 9,9'-Spirobifluoren gewählt. Dieses Molekül ist leicht und vielfältig zu di- bzw. tetrafunktionellen Monomeren modifizierbar. Dabei wurden bestehende Synthesevorschriften modifiziert bzw. neue Vorschriften entwickelt.
Ein erster Schwerpunkt innerhalb des Kapitels lag in der Synthese und Charakterisierung von löslichen, intrinsisch mikroporösen, aromatischen Polyamid und Polyimid. Es konnte gezeigt werden, dass das Beobachten von Mikroporosität stark von der molekularen Architektur und der Verarbeitung der Polymere abhängig ist. Die Charakterisierung der Porosität erfolgte unter Nutzung von Stickstoffsorption, Kleinwinkelröntgenstreuung und Molecular Modeling. Es konnte gezeigt werden, dass die Proben stark vom Umgebungsdruck abhängigen Deformationen unterliegen. Die starke Quellung der Proben während des Sorptionsvorgangs konnte durch Anwendung des "dual sorption" Modells, also dem Auftreten von Porenfüllung und dadurch induzierter Henry-Sorption, erklärt werden.
Der zweite Schwerpunkt des Kapitels beschreibt die Synthese und Charakterisierung mikroporöser Polyamid- und Polyimidnetzwerke. Während Polyimidnetzwerke auf Spirobifluorenbasis ausgeprägte Mikroporosität und spezifische Oberflächen von ca. 1100 m²/g aufwiesen, war die Situation für entsprechende Polyamidnetzwerke abweichend. Mittels Stickstoffsorption konnte keine Mikroporosität nachgewiesen werden, jedoch konnte mittels SAXS eine innere Grenzfläche von ca. 300 m²/g nachgewiesen werden.
Durch die in dieser Arbeit gezeigten Experimente kann die Grenze zwischen Polymeren mit hohem freien Volumen und mikroporösen Polymeren somit etwas genauer gezogen werden. ausgeprägte Mikroporosität kann nur in extrem steifen Strukturen nachgewiesen werden.
Die Kombination der Konzepte "Mesoporosität durch Templatierung" und "Mikroporosität durch strukturierte Monomere" hatte ein hierarchisch strukturiertes Polybenzimidazol zum Ergebnis. Die Präsenz einer Strukturierung im molekularen Maßstab konnte SAXS bewiesen werden. Das so strukturierte Polybenzimidazol zeichnete sich durch eine höhere Protonenleitfähigkeit im Vergleich zu einem rein mesoporösen PBI aus.
Der letzte Teil der Arbeit beschäftigte sich mit der Entwicklung einer neuen Synthesemethode zur Herstellung von Polybenzimidazol. Es konnte gezeigt werden, dass lineares PBI in einer eutektischen Salzschmelze aus Lithium- und Kaliumchlorid synthetisiert werden kann. Die Umsetzung der spirobifluorenbasierten Monomere zu löslichem oder vernetztem PBI ist in der Salzschmelze möglich. / The first part of the thesis describes the synthesis and characterisation of cross linked, mesoporous poly(benzimidazole) (PBI) prepared by a hard templating approach. Silica nanoparticles were used as template and removed after the polycondensation by immersing the hybrid material in aqueous NH4HF2 solution. The resulting mesoporous PBI showed surface areas up to 200 m²/g as established by N2 BET and porosities up to 37 vol.-%. The influence of the template and cross linker content on the observable porosity was investigated. Nitrogen sorption and small angle x-ray scattering (SAXS) were employed as analytical techniques. The template morphology was reproduced almost perfectly, yielding spherical pores of 11 nm in diameter if the samples were fully cross linked. It was shown that there is a linear dependence of the porosity on the template content up to a critical weight ratio of silica/polymer. If the silica content is raised above 50 wt.-% partial collapse of pores is observed. The dependence of the porosity on the cross linker content at constant amount of template was found to be non-linear. At the absence of any cross linker, no porosity was observed after template removal. At 10 mol-% cross linker the onset of porosity could be observed. At higher cross linker contents, the porosity was nearly the same as for the fully cross linked PBI.
The mesoporous PBI could be loaded with crystalline phosphoric acid to yield highly proton conductive materials. It was shown that the material retains its nanostructure when loaded with phosphoric acid even after annealing at 180_C for 12 h. The conductivity of the nanostructured samples was one to two orders of magnitude higher than the conductivity of a nonstructured sample. The impact of the cross linking density on the conductivity was also investigated.
The second part of the work describes the synthesis and characterisation of microporous poly(amide)s and poly(imide)s. 9,9'-spirobifluorene derivatives were used to introduce a rigid, structure-directing motif which prevents the polymer chains from close packing.
Firstly, the synthesis of soluble poly(amide)s and poly(imide) is described. It was observed that the microporosity is strongly dependent on the processing of the soluble polymers. In the case when polymers were precipitated from solvents of high polarity no microporosity was observed, while polymers prone to solvation in solvents of lower polarity exhibited microporosity as observed in nitrogen sorption measurements. Wide angle x-ray scattering (WAXS) showed that the microstructure was indeed dependent on the processing conditions. SAXS measurements of the polymers revealed that nitrogen sorption alone is not sufficient for the analysis of the porosity. A significant mismatch between the results obtained by the two methods indicated that only a fraction of the pore volume of the polymers was accessible for nitrogen molecules.
The second part of the chapter describes the synthesis, characterisation and application of spirobifluorene based, cross linked poly(amide)s and poly(imide)s. The poly(amide) networks did not show any microporosity when analysed by nitrogen sorption. This led to the conclusion that the amide bond is too weak to withstand the interfacial forces. In contrast, poly(imide) networks exhibited pronounced microporosity with surface areas of around 1000 m2/g. The analysis of these networks was again done by nitrogen sorption and SAXS. Furthermore, molecular modelling was used to calculate the true and apparent densities of the networks. In case of the poly(imide) networks, the results of the various measurement techniques were in reasonable agreement. This indicates that the pore volume was nearly completely accessible. Finally it was established that the structure directing motif is necessary to obtain microporous polymers, as a poly(imide) prepared from a spatially undefined monomer did not feature microporosity.
Pressure dependent SAXS measurements showed that the polymer networks undergo significant elastic deformations upon evacuation. This behavior complicates the analysis of the nitrogen sorption data, making it impossible to extract reliable pore size distributions.
The third and last part of the thesis deals with the development of a new reaction medium for the synthesis of poly(benzimidazole). An eutectic salt melt, composed of lithium chloride and potassium chloride was used in an ionothermal synthesis of linear PBI, opening a green chemistry route towards PBI. The influence of the reaction conditions on the properties of the resulting polymers was investigated. The new reaction medium allowed furthermore the synthesis of linear and cross linked spirobifluorene based PBIs. This is not easily possible by using the classical synthetic pathways towards PBI. The spirobifluorene based PBIs synthesized in this work did, however not feature intrinsic microporosity.
|
10 |
Computational Investigations of Potential Energy Function Development for Metal-Organic Framework Simulations, Metal Carbenes, and Chemical Warfare AgentsCioce, Christian R. 01 January 2015 (has links)
Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST -- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented.
Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling.
Additionally, the characterization of a new type of tunable radical metal--carbene is presented. Here, a cobalt(II)--porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal--carbene complex, with a doublet cobalt into which a triplet carbene sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs.
Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.
|
Page generated in 0.0833 seconds