Spelling suggestions: "subject:"sas turbine engine"" "subject:"suas turbine engine""
1 |
Blade surface pressure measurements on the rotor of a model turbine stage in a transient flow facilityDietz, Anthony John January 1990 (has links)
No description available.
|
2 |
Stability of split flow fansTzannatos, E. January 1986 (has links)
The performance requirements of turbofan engines demands a stability and transient capability beyond that associated with the past generations of gas turbine engines. The axial flow fan unit is most vulnerable to loading limitations due to the primary problems associated with the compression process, its sensitivity to inlet distortion and the difficulty to design for an overall optimum blade duty in a machine of wide radial blade loading distribution. The development of mathematical models with some capability of predicting the stable operating range of an axial flow fan has to overcome the difficulties associated with the modelling of the radially distinct flow regions and their dynamic interaction. ' The current investigation combined the available knowledge of one-dimensional models (based on the principles of conservation of mass, linear momentum and energy) with the assumptions of the parallel compressor theory, in order to develop a linearized system of equations for stability analysis (surge prediction). The stability conditions which emerged from this approach were applied on the experimentally derived characteristics of a low hub to tip ratio split flow fan in a manner which involved the modelling of the dynamic interaction of the inner and outer flow region of the fan. The development of the governing equations was achieved by applying one-dimensional flow analysis to the inner and outer section of the fan. Their interaction was modelled on the experimentally obtained radial movement of the splitter streamline and the discharge ,static pressure 'radial distribution. The inner and outer region were treated as a lumped volume element search operating on a local masflow averaged total pressure rise characteristic and alternatively acting in conjunction with a common nozzle and separate nozzles. The experimental investigation was carried out on a low hub totipratio two-stage split flow fan(with the facility of independent bypass and core throttles)in order to examine the localised and overall performance of such a fan(and the staling processes involved)and to enable the application of the stability analysis. The influence of reducing the distance between the fan flow spliter and the last bladerowasal so investigated, «The mathematical mode1s predicted the point of dynamic instability within 4.52 of the experimental observed mas flow rate and pressure is value.
|
3 |
The mixing characteristics of dilution jets issuing into a confined cross-flowCarrotte, Jonathan F. January 1990 (has links)
An experimental investigation has been carried out into the mixing of a row of jets injected into a confined cross-flow. Measurements were made on a fully annular test facility, the geometry of the rig simulating that found in the dilution zone of a gas turbine combustion chamber. A small temperature difference of 44°C between the cross-flow and dilution fluid allowed the mixing characteristics to be assessed, with hot jets being injected into a relatively cold cross-flow at a jet to cross-flow momentum flux ratio of 4.0. The investigation concentrated on differences in the mixing of individual dilution jets, as indicated by the regularity of the temperature patterns around the cross-flow annulus. Despite the uniform conditions approaching the dilution holes there were significant differences in the temperature patterns produced by the dilution jets around the annulus.
|
4 |
An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Compression SystemsBoyer, Keith M. 03 May 2001 (has links)
A streamline curvature (SLC) throughflow numerical model was assessed and modified to better approximate the flow fields of highly transonic fans typical of military fighter applications. Specifically, improvements in total pressure loss modeling were implemented to ensure accurate and reliable off-design performance prediction. The assessment was made relative to the modeling of key transonic flow field phenomena, and provided the basis for improvements, central to which was the incorporation of a physics-based shock loss model. The new model accounts for shock geometry changes, with shock loss estimated as a function of inlet relative Mach number, blade section loading (flow turning), solidity, leading edge radius, and suction surface profile. Other improvements included incorporation of loading effects on the tip secondary loss model, use of radial blockage factors to model tip leakage effects, and an improved estimate of the blade section incidence at which minimum loss occurs.
Data from a single-stage, isolated rotor and a two-stage, advanced-design (low aspect ratio, high solidity) fan provided the basis for experimental comparisons. The two-stage fan was the primary vehicle used to verify the present work. Results from a three-dimensional, steady, Reynolds-averaged Navier-Stokes model of the first rotor of the two-stage fan were also used to compare with predicted performance from the improved SLC representation.
In general, the effects of important flow phenomena relative to off-design performance of the fan were adequately captured. These effects included shock loss, secondary flow, and spanwise mixing. Most notably, the importance of properly accounting for shock geometry and loss changes with operating conditions was clearly demonstrated. The majority of the increased total pressure loss with loading across the important first-stage tip region was shown to be the result of increased shock loss, even at part-speed. Overall and spanwise comparisons demonstrated that the improved model gives reasonable performance trends and generally accurate results, indicating that the physical understanding of the blade effects and the flow physics that underlie the loss model improvements are correct and realistic. The new model is unique in its treatment of shock losses, and is considered a significant improvement for fundamentally based, accurate throughflow numerical approximations.
The specific SLC model used here is employed in a novel numerical approach — the Turbine Engine Analysis Compressor Code (TEACC). With implementation of the improved SLC model and additional recommendations presented within this report, the TEACC method offers increased potential for accurate analysis of complex, engine-inlet integration issues, such as time-variant inlet distortion. / Ph. D.
|
5 |
A New Machine Learning Based Approach to NASA's Propulsion Engine Diagnostic Benchmark ProblemJanuary 2015 (has links)
abstract: Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine makes.
NASA has designed and publicized a standard benchmark problem for propulsion engine gas path diagnostic that enables comparisons among different engine diagnostic approaches. Some traditional model-based approaches and novel purely data-driven approaches such as machine learning, have been applied to this problem.
This study focuses on a different machine learning approach to the diagnostic problem. Some most common machine learning techniques, such as support vector machine, multi-layer perceptron, and self-organizing map are used to help gain insight into the different engine failure modes from the perspective of big data. They are organically integrated to achieve good performance based on a good understanding of the complex dataset.
The study presents a new hierarchical machine learning structure to enhance classification accuracy in NASA's engine diagnostic benchmark problem. The designed hierarchical structure produces an average diagnostic accuracy of 73.6%, which outperforms comparable studies that were most recently published. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
|
6 |
Pulse Combustor Pressure Gain Combustion for Gas Turbine Engine ApplicationsLisanti, Joel 05 1900 (has links)
The gas turbine engine is an integral component of the global energy infrastructure and, through widespread use, contributes significantly to the emission of harmful pollutants and greenhouse gases. As such, the research and industrial community have a significant interest in improving the thermal efficiency of these devices. However, after nearly a century of development, modern gas turbine technology is nearing its realizable efficiency limit. Thus, using conventional approaches, including increased compression ratios and turbine inlet temperatures, only small future efficiency gains are available at a high cost. If a significant increase in gas turbine engine efficiency is to be realized, a deviation from this convention is necessary.
Pressure gain combustion is a new combustion technology capable of delivering a step increase in gas turbine efficiency by replacing the isobaric combustor found in conventional engines with an isochoric combustor. This modification to the engine's thermodynamic cycle enables the loss in stagnation pressure typical of an isobaric combustor to be replaced with an overall net gain in stagnation pressure across the heat addition process. In this work, a pressure gain combustion technology known as the resonant pulse combustor is studied experimentally and numerically to bridge the gap between lab-scale experiments and practical implementations.
First, a functional novel active valve resonant pulse combustor was designed and prototyped, thereby demonstrating naturally aspirated resonant operation with an air inlet valve-driven at a fixed frequency. Then, a series of experimental and numerical studies were carried out to increase the pressure gain performance of the combustor, and the performance and applicability of the active valve resonant pulse combustor concept were then experimental demonstrated in atmospheric conditions with both gaseous and liquid hydrocarbon fuels. Finally, the improved active valve resonant pulse combustor's pressure gain and NOX emissions performance was characterized within a high-pressure shroud in a configuration applicable to gas turbine applications and with varied inlet pressures extending up to 3 bar. This study demonstrates the low NOX capability of the pulse combustor concept and provides insight into how the device's performance may scale with increasing inlet pressure, as would exist in a practical application.
|
7 |
Numerical Analysis of a Flameless Swirl Stabilized Cavity Combustor for Gas Turbine Engine ApplicationsDsouza, Jason Brian 04 October 2021 (has links)
No description available.
|
8 |
An Investigation of Lean Premixed Hydrogen Combustion in a Gas Turbine EnginePerry, Matthew Vincent 24 July 2009 (has links)
As a result of growing concerns about the carbon emissions associated with the combustion of conventional hydrocarbon fuels, hydrogen is gaining more attention as a clean alternative. The combustion of hydrogen in air produces no carbon emissions. However, hydrogen-air combustion does have the potential to produce oxides of nitrogen (NOx), which are harmful pollutants. The production of NOx can be significantly curbed using lean premixed combustion, wherein hydrogen and air are mixed at an equivalence ratio (the ratio of stoichiometric to actual air in the combustion process) significantly less than 1.0 prior to combustion. Hydrogen is a good candidate for use in lean premixed systems due to its very wide flammability range. The potential for the stable combustion of hydrogen at a wide range of equivalence ratios makes it particularly well-suited to application in gas turbines, where the equivalence ratio is likely to vary significantly over the operating range of the machine.
The strong lean combustion stability of hydrogen-air flames is due primarily to high reaction rates and the associated high turbulent burning velocities. While this is advantageous at low equivalence ratios, it presents a significant danger of flashback — the upstream propagation of the flame into the premixing device — at higher equivalence ratios. An investigation has been conducted into the operation of a specific hydrogen-air premixer design in a gas turbine engine. Laboratory tests were first conducted to determine the upper stability limits of a single premixer. Tests were then carried out in which eighteen premixers and a custom-fabricated combustor liner were installed in a modified Pratt and Whitney Canada PT6A-20 turboprop engine. The tests examined the premixer and engine operability as a result of the modifications. A computer cycle analysis model was created to help analyze and predict the behavior of the modified engine and premixers. The model, which uses scaled component maps to predict off-design engine performance, was integral in the analysis of premixer flashback which limited the operation of the modified engine. / Master of Science
|
9 |
Simultaneous multi-design point approach to gas turbine on-design cycle analysis for aircraft enginesSchutte, Jeffrey Scott 06 April 2009 (has links)
Gas turbine engines for aircraft applications are required to meet multiple performance and sizing requirements, subject to constraints established by the best available technology level. The performance requirements and limiting values of constraints that are considered by the cycle analyst conducting an engine cycle design occur at multiple operating conditions. The traditional approach to cycle analysis chooses a single design point with which to perform the on-design analysis. Additional requirements and constraints not transpiring at the design point must be evaluated in off-design analysis and therefore do not influence the cycle design. Such an approach makes it difficult to design the cycle to meet more than a few requirements and limits the number of different aerothermodynamic cycle designs that can reasonably be evaluated.
Engine manufacturers have developed computational methods to create aerothermodynamic cycles that meet multiple requirements, but such methods are closely held secrets of their design process. This thesis presents a transparent and publicly available on-design cycle analysis method for gas turbine engines which generates aerothermodynamic cycles that simultaneously meet performance requirements and constraints at numerous design points. Such a method provides the cycle analyst the means to control all aspects of the aerothermodynamic cycle and provides the ability to parametrically create candidate engine cycles in greater numbers to comprehensively populate the cycle design space from which a "best" engine can be selected.
This thesis develops the multi-design point on-design cycle analysis method labeled simultaneous MDP. The method is divided into three different phases resulting in an 11 step process to generate a cycle design space for a particular application. Through implementation of simultaneous MDP, a comprehensive cycle design space can be created quickly for the most complex of cycle design problems. Furthermore, the process documents the creation of each candidate engine providing transparency as to how each engine cycle was designed to meet all of the requirements. The simultaneous MDP method is demonstrated in this thesis on a high bypass ratio, separate flow turbofan with up to 25 requirements and constraints and 9 design points derived from a notional 300 passenger aircraft.
|
10 |
Multi-Scale Flow and Flame Dynamics at Engine-Relevant ConditionsJohn Philo (12226004) 20 April 2022 (has links)
<div>The continued advancement of gas turbine combustion technology for power generation and propulsion applications requires novel techniques to increase the overall engine cycle efficiency and improved methods for mitigating combustion instabilities. To help address these problems, high-speed optical diagnostics were applied to two different experiments that replicate relevant physics in gas turbine combustors. The focus of the measurements was to elucidate the effect of various operating parameters on combustion dynamics occurring over a wide range of spatio-temporal flow and chemical scales. The first experiment, VIPER-M, enabled the investigation of coupling mechanisms for transverse instabilities in a multi-element, premixed combustor that maintains key similarities with gas turbine combustors for land based power generation. The second experiment, COMRAD, facilitated the study of the effect of fuel heating on the combustion performance and dynamics in a liquid-fueled, piloted swirl flame typical of aviation engine combustors. </div><div> </div><div><br></div><div>Two different injector lengths were tested in the VIPER-M experiment, and high-speed CH* chemiluminescence imaging and an array of high-frequency pressure transducers were used to characterize the overall combustor dynamics. For all conditions tested, the longer injector length configuration exhibited high-amplitude instabilities, with pressure fluctuations greater than 100% of the mean chamber pressure. This was due to the excitation of the fundamental transverse mode, with a frequency around 1800 Hz, as well as multiple harmonics. Shortening the injector length significantly lowered the instability amplitudes at all conditions and excited an additional mode near 1550 Hz for lower equivalence ratio cases. The delineating feature controlling the growth of the instabilities in the two injector configurations was shown to be the coupling between the transverse modes in the chamber and axial pressure fluctuations in the injectors.</div><div> </div><div><br></div><div>Heated fuels were introduced into the COMRAD experiment, and simultaneous 10 kHz stereoscopic particle image velocimetry and OH* chemiluminescence imaging were performed over a range of equivalence ratios and combustor pressures to study the influence of fuel temperature on the flow and flame structure. The main flame was found to move upstream as the fuel was heated, while no changes in the pilot flame location were observed in the field of view at the exit of the injector. The upstream shift of the main flame corresponded to a local increase in the axial velocity, which caused the shear layer between the pilot/main flames and the central recirculation zone to move downstream. Direct comparison of the mean velocity fields relative to the mean flame location showed that heating the fuel caused the velocity normal to the flame front to increase, which is indicative of an increase in flame speed. The changes to the fuel injection and chemical kinetics help explain the local changes to the flow and flame structure, which contribute to an overall increase in combustion efficiency as well as NO<sub>x</sub> emissions.</div><div> </div><div><br></div><div>Lastly, the effect of fuel injection temperature on the presence of an 800 Hz combustion instability in the COMRAD experiment was investigated. High-frequency pressure and high-speed chemiluminescence measurements revealed a decrease in the instability amplitude as the fuel was heated. The coupling between the fuel flow and the unsteady heat release was studied using independent 10 kHz stereoscopic particle image velocimetry and 10 kHz Mie scattering measurements. The variations in the fuel flow entering the combustor over the acoustic cycle decreased as the instability amplitude weakened. 100 kHz burst-mode, two-component particle image velocimetry was then applied to the unstable condition with ambient temperature fuel. This measurement was capable of resolving both the large-scale changes to the structure of the inner recirculation zone occurring at 800 Hz as well as the time-evolution of small-scale vortex structures. The vortices were shown to correspond to a characteristic frequency in the range of 4-5.5 kHz, and the strength of the vortex structures fluctuated with the global 800 Hz combustion dynamics. These results highlight the importance of performing measurements capable of resolving the wide range of scales present in the flow-fields typical of gas turbine combustors to improve current understanding of flame-flow coupling mechanisms.</div>
|
Page generated in 0.0875 seconds