Spelling suggestions: "subject:"anhydrate"" "subject:"carboydrate""
31 |
Gas production from hydrate-bearing sedimentsJang, Jaewon 08 July 2011 (has links)
Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. The unique behavior of hydrate-bearing sediments requires the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Hydraulic conductivity decreases with increasing variance in pore size distribution; while spatial correlation in pore size reduces this trend, both variability and spatial correlation promote flow focusing. Invading gas forms a percolating path while nucleating gas forms isolated gas bubbles; as a result, relative gas conductivity is lower for gas nucleation than for gas invasion processes, and constitutive models must be properly adapted for reservoir simulations. Physical properties such as gas solubility, salinity, pore size, and mixed gas conditions affect hydrate formation and dissociation; implications include oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations. High initial hydrate saturation and high depressurization favor gas recovery efficiency during gas production from hydrate-bearing sediments. Even a small fraction of fines in otherwise clean sand sediments can cause fines migration and concentration, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.
|
32 |
Three-dimensional gas migration and gas hydrate systems of south Hydrate Ridge, offshore OregonGraham, Emily Megan 15 July 2011 (has links)
Hydrate Ridge is a peanut shape bathymetric high located about 80 km west of Newport, Oregon on the Pacific continental margin, within the Cascadia subduction zone’s accretionary wedge. The ridge's two topographic highs (S. and N. Hydrate Ridge) are characterized by gas vents and seeps that were observed with previous ODP initiatives. In 2008, we acquired a 3D seismic reflection data set using the P-Cable acquisition system to characterize the subsurface fluid migration pathways that feed the seafloor vent at S. Hydrate Ridge.
The new high-resolution data reveal a complex 3D structure of localized faulting within the gas hydrate stability zone (GHSZ). We interpret two groups of fault-related migration pathways. The first group is defined by regularly- and widely-spaced (100-150 m) faults that extend greater than 300ms TWT (~ 250 m) below seafloor and coincide with the regional thrust fault orientations of the Oregon margin. The deep extent of these faults makes them potential conduits for deeply sourced methane and may include thermogenic methane, which was found with shallow drilling during ODP Leg 204. As a fluid pathway these faults may complement the previously identified sand-rich, gas-filled stratigraphic horizon, Horizon A, which is a major gas migration pathway to the summit of S. Hydrate Ridge. The second group of faults is characterized by irregularly but closely spaced (~ 50 m), shallow fractures (extending < 160ms TWT below seafloor, ~ 115 m) found almost exclusively in the GHSZ directly beneath the seafloor vent at the summit of S. Hydrate Ridge. These faults form a closely-spaced network of fractures that provide multiple migration pathways for free gas entering the GHSZ to migrate vertically to the seafloor. We speculate that the faults are the product of hydraulic fracturing due to near-lithostatic gas pressures at the base of the GHSZ. These fractures may fill with hydrate and develop a lower permeability, which will lead to a buildup of gas pressures below the GHSZ. This may lead to a vertical propagation of new fractures to release the overpressure, which results in the high concentration of shallow fractures within the GHSZ seen in the 2008 data. / text
|
33 |
STRUCTURAL CHARACTERIZATION OF NATURAL GAS HYDRATES IN CORE SAMPLES FROM OFFSHORE INDIAKumar, Pushpendra, Das, H.C., Anbazhagen, K., Lu, Hailong, Ripmeester, John A. 07 1900 (has links)
The dedicated gas hydrate coring/drilling program was carried out under National Gas
Hydrate Program (NGHP) in four Indian offshore areas (Kerala-Konkan, Krishna-
Godavari, Mahanadi and Andman) during 28th April to 19th August, 2006. During
NGHP Expedition 01, 2006, total of 39 holes were drilled/cored at 21 sites in these areas.
The gas hydrates have been found to be present in large quantities in Indian offshore
areas particularly in KG basin. More than 130 confirmed solid gas hydrate samples were
recovered during this hydrate coring/drilling program. The laboratory analysis was
carried out on the 34 natural gas hydrate samples recovered from offshore India. The gas
hydrate characterization was carried out using the microscopic techniques such as
Raman, 13C NMR and XRD for its structure, cavity occupancy and hydration number.
The gas hydrates occur in grayish green fine sediments, gray medium sands and white
volcanic ash as pore-filling hydrate and massive hydrates in fractured shale/clay. The
visible massive gas hydrates developed especially at Site NGHP 1-10B, 10C, 10D and
21A in K G area. The structures of the gas hydrates in the studied samples are all sI, with
methane as the dominant guest molecule. The occupancy of methane in large cage is
almost complete, while it is variable in the small cage (0.75 to 0.99). The hydration
number is 6.10 ± 0.15 for most of the hydrates in the samples studied. This paper presents
the results of the laboratory analysis on the structural characterization of natural gas
hydrates in core samples from offshore India.
|
34 |
THERMODYNAMIC AND SPECTROSCOPIC ANALYSIS OF TERTBUTYL ALCOHOL HYDRATE: APPLICATION FOR THE METHANE GAS STORAGE AND TRANSPORTATIONPark, Youngjune, Cha, Minjun, Shin, Woongchul, Cha, Jong-Ho, Lee, Huen, Ripmeester, John A. 07 1900 (has links)
Recently, clathrate hydrate has attracted much attention because of its energy gas enclathration
phenomenon. Since energy gas such as methane, ethane, and hydrogen could be stored in solid
hydrate form, clathrate hydrate research has been considerably focused on energy gas storage and
transportation medium. Especially, methane hydrate, which is crystalline compound that are
formed by physical interaction between water and relatively small sized guest molecules, can
contain about as much as 180 volumes of gas at standard pressure and temperature condition. To
utilize gas hydrate as energy storage and transportation medium, two important key features:
storage capacity and storage condition must be considered. Herein, we report the inclusion
phenomena of methane occurred on tert-butyl alcohol hydrate through thermodynamic
measurement and spectroscopic analysis by using powder X-ray diffractometer, and 13C solidstate
NMR. From spectroscopic analysis, we found the formation of sII type (cubic, Fd3m)
clathrate hydrate by introducing methane gas into tert-butyl alcohol hydrate whereas tert-butyl
alcohol hydrate alone does not form clathrate hydrate structure. Under equilibrium condition,
pressure-lowering effect of methane + tert-butyl alcohol double hydrate was also observed. The
present results give us several key features for better understanding of inclusion phenomena
occurring in the complex hydrate systems and further developing methane or other gas storage
and transportation technique.
|
35 |
NUMERICAL SIMULATION OF GAS - HYDRATE SLURRY TWO PHASE FLOWGong, Jing, Zhao, Jian-Kui 07 1900 (has links)
As a result of the problem of hydrate in multiphase pipelines in offshore production is becoming
more and more severe with the increasing of the water depth, the study on oil-gas-water-hydrate
has became a hot point of multiphase flow. In this paper, the hydrate particle and liquid phase was
treated as pseudo-fluid, the steady hydraulic, thermodynamical and phase equilibrium calculation
method of gas-hydrate slurry was developed. Comparison was carried out between calculated data
and experimental data from flow loop in our laboratory.
With strict flash calculation the following items were determined: the amount of hydrate; phase
number; the location that hydrate appeared; flowrate and molar component of gas phase and
liquid phase. Then thermodynamic quantities were carried out with proper relational expression.
When Compositional model is used to simulate two phase flow, it is required to couple mass,
momentum, energy equation and equation of state. In the other word, the parameters in these four
equations are interacted. However they are all the functions of p, T and z. In steady condition, it’s
assumed that the composition of fluid is unchangeable along the pipeline and the flow can be
described by pressure and temperature. In this paper, calculation method of gas-liquid two phase
flow which respectively was improved. Liquid holdup and pressure drop were calculated by
momentum equation. Enthalpy balance equation was substituted by explicit formulation of
temperature calculation which meant that the loop of temperature was not required.
|
36 |
SWAPPING CARBON DIOXIDE FOR COMPLEX GAS HYDRATE STRUCTURESPark, Youngjune, Cha, Minjun, Cha, Jong-Ho, Shin, Kyuchul, Lee, Huen, Park, Keun-Pil, Juh, Dae-Gee, Lee, Ho-Young, Kim, Se-Joon, Lee, Jaehyoung 07 1900 (has links)
Large amounts of CH4 in the form of solid hydrates are stored on continental margins and in
permafrost regions. If these CH4 hydrates could be converted into CO2 hydrates, they would serve
double duty as CH4 sources and CO2 storage sites. Herein, we report the swapping phenomena
between global warming gas and various structures of natural gas hydrate including sI, sII, and sH
through 13C solid-state nuclear magnetic resonance, and FT-Raman spectrometer. The present
outcome of 85% CH4 recovery rate in sI CH4 hydrate achieved by the direct use of binary N2 +
CO2 guests is quite surprising when compared with the rate of 64 % for a pure CO2 guest attained
in the previous approach. The direct use of a mixture of N2 + CO2 eliminates the requirement of a
CO2 separation/purification process. In addition, the simultaneously-occurring dual mechanism of
CO2 sequestration and CH4 recovery is expected to provide the physicochemical background
required for developing a promising large-scale approach with economic feasibility. In the case of
sII and sH CH4 hydrates, we observe a spontaneous structure transition to sI during the
replacement and a cage-specific distribution of guest molecules. A significant change of the
lattice dimension due to structure transformation induces a relative number of small cage sites to
reduce, resulting in the considerable increase of CH4 recovery rate. The mutually interactive
pattern of targeted guest-cage conjugates possesses important implications on the diverse hydratebased
inclusion phenomena as clearly illustrated in the swapping process between CO2 stream
and complex CH4 hydrate structure.
|
37 |
ONSET AND STABILITY OF GAS HYDRATES UNDER PERMAFROST IN AN ENVIRONMENT OF SURFACE CLIMATIC CHANGE - PAST AND FUTUREMajorowicz, Jacek A., Osadetz, Kirk, Safanda, Jan 07 1900 (has links)
Modeling of the onset of permafrost formation and succeeding gas hydrate formation in the changing surface temperature environment has been done for the Beaufort-Mackenzie Basin (BMB). Numerical 1D modeling is constrained by deep heat flow from deep well bottom hole temperatures, deep conductivity, present permafrost thickness and thickness of Type I gas hydrates. Latent heat effects were applied to the model for the entire ice bearing permafrost and Type I hydrate intervals. Modeling for a set of surface temperature forcing during the glacial-interglacial history including the last 14 Myr, the detailed Holocene temperature history and a consideration of future warming due to a doubling of atmospheric CO2 was performed. Two scenarios of gas formation were considered; case 1: formation of gas hydrate from gas entrapped under deep geological seals and case 2: formation of gas hydrate from gas in a free pore space simultaneously with permafrost formation. In case 1, gas hydrates could have formed at a depth of about 0.9 km only some 1 Myr ago. In case 2, the first gas hydrate formed in the depth range of 290 – 300 m shortly after 6 Myr ago when the GST dropped from -4.5 °C to -5.5. °C. The gas hydrate layer started to expand both downward and upward subsequently. More detailed modeling of the more recent glacial–interglacial history and extending into the future was done for both BMB onshore and offshore models. These models show that the gas hydrate zone, while thinning will persist under the thick body of BMB permafrost through the current interglacial warming and into the future even with a doubling of atmospheric CO2.
|
38 |
STUDY OF THE EFFECT OF COMMERCIAL KINETIC INHIBITORS ON GAS-HYDRATE FORMATION BY DSC: NON-CLASSICAL STRUCTURES?Malaret, Francisco, Dalmazzone, Christine, Sinquin, Anne 07 1900 (has links)
A HP micro DSC-VII from SETARAM was used to study the efficiency and mechanism of
action of commercial kinetic inhibitors for gas-hydrate formation in drilling fluids (OBM). The
main objective was to find a suitable and reliable method of screening for these chemicals. The
DSC technique consists in monitoring the heat exchanges, due to phase changes (here hydrate
formation or dissociation), either versus time at constant temperature or versus temperature
during a heating or cooling program. All products showed a gas hydrate dissociation temperature
(at a given pressure) that matched with theoretical and previously published data. Nevertheless,
for some additives two thermal signals were observed on the thermograms, one that corresponds
to the theoretical value and another at a higher temperature (about +4°C). This second peak is
insensitive to the heating rate applied for the dissociation, but the areas ratio (1stpeak/2nd peak)
changes with the additive concentration and with the driving force applied during the hydrate
formation. Additionally, additive/water and additive/water/THF systems were tested. In each
case, two dissociation peaks were also measured. The results allow us to disregard any kinetic
effects bonded to this thermal phenomenon, and lead us to infer that some additives may induce
non-classical crystalline structures of gas hydrates. To verify these results, crystallographic and
spectroscopic experiments must be performed. The stabilities of these new compounds are under
study.
|
39 |
A DOMAIN DECOMPOSITION APPROACH FOR LARGE-SCALE SIMULATIONS OF FLOW PROCESSES IN HYDRATE-BEARING GEOLOGIC MEDIAZhang, Keni, Moridis, George J., Wu, Yu-Shu, Pruess, Karsten 07 1900 (has links)
Simulation of the system behavior of hydrate-bearing geologic media involves solving fully
coupled mass- and heat-balance equations. In this study, we develop a domain decomposition
approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This
approach partitions a simulation domain into small subdomains. The full model domain, consisting
of discrete subdomains, is still simulated simultaneously by using multiple processes/processors.
Each processor is dedicated to following tasks of the partitioned subdomain: updating
thermophysical properties, assembling mass- and energy-balance equations, solving linear
equation systems, and performing various other local computations. The linearized equation
systems are solved in parallel with a parallel linear solver, using an efficient interprocess
communication scheme. This new domain decomposition approach has been implemented into the
TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this
paper, we will demonstrate applications for the new approach in simulating field-scale models for
gas production from gas-hydrate deposits.
|
40 |
EFFECTS OF ADDITIVES ON CARBON DIOXIDE HYDRATE FORMATIONLiu, Ni, Gong, Guoqing, Liu, Daoping, Xie, Yingming 07 1900 (has links)
In this paper, the effect of additives on COB2B hydrate formation is investigated in a high-pressure
test cell surrounded by a thermostated coolant bath. An agitator is configured inside the cell. The
characteristics of COB2B gas hydrate formation with additives SDS, THF and mixture of both were
discussed. It was found that, in a quiescent system with single SDS,hydrate could form rapidly
and the induction time of hydrates formation was reduced, while THF shows no improvement
effect on COB2B hydrate formation. However, the mixture of SDS and THF can promote the hydrate
formation rate considerably, and large amount of hydrates formed. In a stirring system with
mixture additives, hydrates can form completely about 100 minutes early than that in the
quiescent system.
|
Page generated in 0.0345 seconds