• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 2
  • 1
  • Tagged with
  • 31
  • 11
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Signaling pathways in myocyte hypertrophy:role of GATA4, mitogen-activated protein kinases and protein kinase C

Kerkelä, R. (Risto) 11 April 2003 (has links)
Abstract Cardiac myocytes react to increased workload and hypertrophic neurohumoral stimuli by increasing protein synthesis, reinitiating expression of fetal forms of structural genes, α-skeletal actin (α-SkA) and β-myosin heavy chain (β-MHC), and by increasing expression and secretion of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP). Initially, the response is beneficial, but when prolonged, it leads to pathological cardiomyocyte hypertrophy. In this study, cardiomyocyte hypertrophy was initiated by hypertrophic agonists, endothelin-1 (ET-1) and phenylephrine (PE), and by increased stretching of atrial wall. Transcription factor GATA4 was studied to identify the mechanism leading to increased gene expression of BNP. In BNP promoter, GATA4 binds to cis elements mediating hypertrophic response. Eliminating GATA4 binding by using the decoy approach, basal BNP gene expression was reduced. To identify mechanisms regulating GATA4, the roles of mitogen-activated protein kinases (MAPKs) were studied. Activation of p38 MAPK increased GATA4 binding to BNP gene and led to increased GATA4 dependent BNP gene expression. p38 MAPK was required for ET-1 induced GATA4 binding, whereas extracellular signal-regulated kinase (ERK) was required for maintaining basal GATA4 binding activity. PE and ET-1 activated protein kinase C (PKC) signaling in cardiac myocytes. Antisense oligonucleotide inhibition of PKCα markedly reduced PE induced ANP secretion and ET-1 induced BNP secretion, whereas gene expression of natriuretic peptides was not affected. Antisense PKCα treatment inhibited PE induced expression of α-SkA, while increased protein synthesis or β-MHC gene expression were not affected. Sretching of the perfused rat atria increased BNP, c-fos and BNP gene expression via mechanism involving p38 MAP kinase activation of transcription factor Elk-1. In cultured neonatal rat atrial myocytes stretch induced BNP gene expression was dependent upon transcription factor Elk-1 binding sites within the BNP gene promoter. In conclusion, hypertrophic signaling in cardiac myocytes involves multiple signaling cascades. Activation of p38 MAPK is required for the development of ET-1 induced hypertrophic phenotype and GATA4 mediated BNP gene expression in cultured ventricular myocytes, and for stretch induced Elk-1 dependent BNP gene expression in atrial myocytes. PKCα is involved in PE induced hypertrophic response and PE induced switch in gene programming inducing expression of α-SkA, the fetal form of cardiac α-actin.
22

Regulation of cell fate and cell behaviour during primitive endoderm formation in the early mouse embryo

Saiz, Nestor January 2012 (has links)
The preimplantation stages of mammalian development are dedicated to the differentiation of two extraembryonic epithelia, the trophectoderm (TE) and the primitive endoderm (PrE), and their segregation from the pluripotent embryonic lineage, the epiblast. The TE and PrE are responsible for implantation into the uterus and for producing the tissues that will support and pattern the epiblast as it develops into the foetus. PrE and epiblast are formed in a two step process that involves random cell fate specification, mediated by fibroblast growth factor (FGF) signalling, and cell sorting through several mechanisms. In the present work I have addressed aspects of both steps of this process. Chimaera assays showed that epiblast precursors transplanted onto a recipient embryo rarely differentiate into PrE, while PrE precursors are able to switch their identity and become epiblast. Transient stimulation or inhibition of the FGF4-ERK pathway in the chimaeras can modify the behaviour of these cells and restore the plasticity of epiblast precursors. This work shows that epiblast precursors are refractory to differentiation signals, thus ensuring the preservation of the embryonic lineage. I have also found that atypical Protein Kinase C (aPKC) is a marker of PrE cells and that pharmacological inhibition of aPKC impairs the segregation of PrE and epiblast precursors. Furthermore, it affects the survival of PrE cells and can alter the subcellular localisation of the PrE transcription factor GATA4. These data indicate aPKC plays a central role for the sorting of the PrE and epiblast populations and links cell position within the embryo to PrE maturation and survival. Lastly, I have found that aPKC can directly phosphorylate GATA4 in vitro. Knockdown of GATA4 affects cell position within the embryo, whereas aPKC knockdown reduces the number of GATA4-positive cells. These results indicate GATA4 plays an important role in cell sorting during preimplantation development and suggest phosphorylation by aPKC could determine its presence in the nuclei of PrE cells. My work, in the light of the current knowledge, supports a model where the earliest cell fate decisions during mammalian development depend on cellular interactions and not on inherited cell fate determinants. This robust mode of development underlies the plasticity of the preimplantation embryo and ensures the formation of the first mammalian cell lineages, critical for any further progression in mammalian development.
23

GATA4 Partners in Cardiac Cell Proliferation

Yamak, Fatimah Abir January 2013 (has links)
Cardiovascular diseases are the leading cause of death in humans throughout the world and “congenital heart defects” (CHDs) are the major cause of infant mortality and morbidity. GATA4 is one of the most critical and intensely studied cardiac transcription factor. It is important for proliferation of cardiomyocytes as well as their survival and adaptive response. The focus of the following thesis was to identify GATA4 mediators and cofactors in cardiac growth. The first part focused on cyclin D2 (CycD2), a growth inducible cell cycle protein. We identified Ccnd2 (gene encoding CycD2) as a direct transcriptional target of GATA4 in postnatal cardiomyocytes and Ccnd2 cardiomyocyte specific overexpression in Gata4 heterozygote mice was able to rescue their heart size and function. We further uncovered a novel regulatory loop between GATA4 and CycD2. CycD2 enhanced GATA4 activation of its target promoters. GATA4 was able to physically interact with CycD2 and its cyclin dependent kinase CDK4 suggesting that GATA4 recruits CycD2/CDK4 to its target promoters. Together, our data uncover a role of CycD2 in the developing and postnatal heart and provide novel insight for the potential of targeting the cell cycle in cardiac therapy. The second part of the project focused on KLF13, a cell specific cofactor of GATA4. KLF13 is a member of the Krϋppel-like transcription factors that are important regulators of cell proliferation and differentiation. Klf13 is highly enriched in the developing heart where it is found in both myocardial and endocardial cells. To determine its role in the mammalian heart, we deleted the Klf13 gene in transgenic mice. Klf13-/- mice were born at 50% reduced frequency and presented with variable cardiac phenotypes. Epithelial-mesenchymal transformation (EMT) was affected in these mice and reduced cell proliferation was evident in the AV cushion. These data uncover a role for a new class of transcription factors in heart formation and point to KLF13 as a regulator of endocardial cell proliferation and a potential CHD causing gene. Future discovery of more cardiac regulators and understanding the molecular basis of CHDs is essential for preventions of these defects and possible development of therapeutic approaches for myocardial repair.
24

Gata4-Dependent Differentiation of c-Kit+ Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart

Maliken, Bryan D., B.A. 29 October 2018 (has links)
No description available.
25

Deficits in Cardiomyocyte Proliferation: Contributors to Congenital Heart Defects

Chang, Sheng-Wei 05 September 2014 (has links)
No description available.
26

Discovering and Modeling Genetic Causes of Congenital Heart Disease

LaHaye, Stephanie Donna 11 August 2017 (has links)
No description available.
27

Discovery of cardioprotective isoxazole-amide compounds targeting the synergy of transcription factors GATA4 and NKX2-5

Välimäki, M. (Mika) 07 December 2018 (has links)
Abstract Acute myocardial infarction is a life-threatening condition that occurs as a result of reduced blood flow in the cardiac muscle, eventually leading to tissue damage. In infarcted areas, cardiomyocytes have insufficient ability to proliferate and replace the injured cells, which is associated with a deficient pumping capacity. A strictly regulated combinatorial interplay of transcription factors, e.g., GATA4, NKX2-5, TBX5, and MEF2C, orchestrates cardiac type gene expression during the cardiomyocyte differentiation and maturation processes. The aim of the present study was to (i) characterize the protein-protein interaction of the cardiac transcription factors GATA4-NKX2-5, (ii) evaluate the chemical agents that modify the synergy of GATA4-NKX2-5 in vitro, (iii) examine the capacity of the lead compound to promote myocardial repair in vivo after myocardial infarction and other cardiac injuries and (iv) study the structural features of the compound important for metabolism and cytotoxicity. Integration of the experimental mutagenic data with computational modeling suggests that the structural architecture of the GATA4-NKX2-5 interaction resembles the protein structure of the conserved DNA binding domain of nuclear receptors. Fragment-based screening, reporter gene-based optimization and pharmacophore searching were utilized to identify the most potent lead compound targeting the GATA4-NKX2-5 interaction: N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide. This compound presented anti-hypertrophic effects in vitro and cardioprotective effects in vivo. In addition, structural analysis of the lead compound revealed the signature molecular features for metabolism and cytotoxicity. Current drug treatments are able to delay, but not prevent the progress of the heart failure; therefore, modulators of protein-protein interactions of key transcription factors may represent a novel class of pharmaceuticals for cardiac remodeling and repair. / Tiivistelmä Sydäninfarkti on henkeä uhkaava verenkierron häiriö, joka syntyy veren virtauksen äkillisen vähentymisen seurauksena sydänlihaksessa aiheuttaen kudosvaurion. Vaurioituneen sydänlihaskudoksen kyky uusiutua tai korvata kuolleet sydänlihassolut uusilla on puutteellinen, ja tämän seurauksena sydämen pumppauskyky heikkenee. Transkriptiotekijöiden GATA4, NKX2-5, TBX5 ja MEF2C muodostamat ja koordinoimat proteiinikompleksit säätelevät sydänsolujen geenien ilmenemistä solujen elinkaaren aikana. Väitöskirjatyön tavoitteena oli (i) karakterisoida geeninsäätelytekijöiden GATA4-NKX2-5 molekyylirakenteet ja niiden keskinäinen vuorovaikutus, (ii) seuloa kemiallisia yhdisteitä, jotka muokkaavat GATA4-NKX2-5 proteiinikompleksin aikaansaamaa geeniaktivaatiota, (iii) tutkia johtoyhdisteen vaikutuksia in vivo sydäninfarktia ja painekuormitusta kuvaavissa eläinmalleissa, ja (iv) tutkia johtoyhdisteen molekyylirakenteen yhteyttä yhdisteen metaboliaan ja sytotoksisuuteen. Väitöskirjatyö osoittaa molekyylimallinuksen ja kokeellisten tulosten perusteella, että geeninsäätelytekijöiden GATA4-NKX2-5 proteiinikompleksin orientaatio matkii tumareseptoriperheen DNA domeenin tertiäärirakennetta. Molekyylifragmenttien, lusiferaasi-reportterikokeen ja farmakoforimallin avulla seulottiin ja optimoitiin sitoutumisvoimakkuudeltaan lupaavin GATA4-NKX2-5 proteiinikompleksin toimintaan vaikuttava johtoyhdiste: N-[4-(dietyyliamino)fenyyli]-5-metyyli-3-fenyyli-isoksatsoli-4-karboksamidi. Johtoyhdisteellä havaittiin solu- ja eläinmalleissa hypertrofiaa estäviä vaikutuksia in vitro ja sydäntä suojaavia vaikutuksia in vivo. Väitöskirjatyö osoitti lisäksi aktiivisten molekyylien rakenneominaisuuksia, jotka keskeisesti vaikuttavat yhdisteiden metaboliaan ja sytotoksisuuteen. Nykyinen lääkehoito hidastaa, mutta ei pysäytä sydänlihasvaurioon liittyvän kroonisen sydämen vajaatoiminnan etenemistä. Lääkevaikutuksen kohdentaminen sydämen keskeisten transkriptiotekijöiden yhteisvaikutukseen avaa uuden mahdollisen tutkimuslinjan sydänlihasvaurion estossa ja korjauksessa.
28

HEPATOCYTE DIFFERENTIATION AND HEPATOCELLULAR CARCINOMA: RATIONALE FOR P53 INDEPENDENT THERAPY

Enane, Francis Obunyakha 02 June 2017 (has links)
No description available.
29

The diagnosis of Patent Foramen Ovale, its importance in migraine, and an insight into its genetic basis

Velupandian, Uma Maheshwari January 2012 (has links)
Background: Patent Foramen Ovale (PFO), a remnant of the foetal circulation, is emerging as a new cause of disease. It has been found to be associated with cryptogenic stroke in young adults, peripheral arterial embolism and neurological decompression sickness in divers. The detection of PFO remains a diagnostic challenge; transoesophageal echocardiogram being currently considered the ‘gold standard’. The development of a non-invasive technique is crucial for the identification of a venous-to-arterial shunt (v-aCS) which may permit paradoxical embolism. Little is known about the genetic basis of PFO and our limited knowledge is based on animal studies and gene mutations detected in patients with other cardiac septal defects. Methods: Study 1: PFO Detection and Evaluation: This study was designed to evaluate transcranial Doppler (TCD), transthoracic echocardiogram (TTE) and transoesophageal echocardiogram (TOE) with administration of contrast via arm and femoral veins. We then developed a standardized protocol for PFO detection and quantification using TCD. Study 2: PFO and Migraine: The PFO detection protocol developed from the first study formed the diagnostic technique to detect v-aCS in an adequately powered matched case control study to explore the association between PFO and migraine. Study 3: The Genetic basis of PFO: This study was designed to explore the genetic basis of a PFO using a candidate gene approach. Results: Study 1 - PFO Detection Study: When compared with TOE with femoral vein contrast injection as the ‘gold standard’, TCD with arm vein contrast was 100% sensitive and 97.4% specific for detecting a PFO. We defined a PFO positive (+ve) study on TCD as > 15 microbubbles entering the cerebral circulation, on TCD following arm vein injection and >16 microbubbles with a femoral contrast injection. A ‘major’ PFO+ve v-aCS was defined as >35 microbubbles with arm vein injection or >90 microbubbles with femoral vein injection. We then developed a new diagnostic pathway for PFO detection in clinical practice. Study 2 - PFO Migraine study: A significant difference in prevalence of v-aCS between migraine with aura M+A) and their matched controls was demonstrated with adjusted OR=3.72 (1.48-9.38) p=0.005 for a PFO+ve v-aCS, and a highly significant difference between M+A and controls for a ‘major’ PFO+ve v-aCS with adjusted OR = 6.38 (1.89 – 21.48) p = 0.003. There was significant association with APC resistance and migraine on thrombophilia screen. Study 3 - The PFO Genetics Study: This study detected mutations of GATA4 and NKX2-5 in both PFO+ve cases and PFO-ve controls. Two novel non synonymous mutations of GATA4, c.461T>A and c.994G>A were found only in PFO positive individuals and may be associated with a PFO. All the PFO+ve cases with a GATA4 gene mutation had a major PFO+ve v-aCSConclusion:TCD detects PFO with a sensitivity of 100% and specificity of 92.3% and is the most reliable non-invasive technique for PFO detection. When arm vein injections are used both cough and valsalva provocation is essential. There was a highly significant association between PFO+ve v- aCS and M+A, especially with a ‘major’ PFO+ve v-aCS. GATA 4 mutations though infrequent were found PFO+ve cases and all had major v-aCS.
30

Diversité fonctionnelle du facteur de transcription Tbx5 dans le coeur

Georges, Romain O. 08 1900 (has links)
Le cœur des vertébrés est un organe modulaire qui requiert le " patterning " complexe des champs morphogénétiques cardiogènes et la convergence coordonnée des diverses sous-populations de progéniteurs cardiogéniques. Au moins 7 facteurs de transcription de la famille T-box coopèrent au sein de ces nombreuses sous-populations de progéniteurs cardiogéniques afin de réguler la morphogenèse et l’agencement de multiples structures le long de l’ébauche cardiaque, ce qui explique que les mutations humaines de ces gènes engendrent diverses malformations congénitales cardiaques (MCCs). L’un de ces gènes T-box, Tbx5, dont l’haploinsuffisance génère le syndrome de Holt-Oram (SHO), intervient dans une grande variété de réseaux de régulation géniques (RRGs) qui orchestrent la morphogenèse des oreillettes, du ventricule gauche, de la valve mitrale, des septums inter-auriculaire et inter-ventriculaire, ainsi que du système de conduction cardiaque. La diversité des RRGs impliqués dans la formation de ces structures cardiaques suggère que Tbx5 détient une profusion de fonctions qui ne seront identifiables qu’en répertoriant ses activités moléculaires dans chaque lignée cardiaque examinée isolément. Afin d’aborder cette problématique, une ablation génétique de Tbx5 dans l’endocarde a été réalisée. Cette expérience a démontré le rôle crucial de Tbx5 dans la survie des cellules endocardiques bordant le septum primum et des cardiomyocytes au sein de cette structure embryonnaire qui contribuera à la morphogenèse du septum inter-auriculaire. En outre, cette étude a révélé l’existence d’une communication croisée entre la sous-population de cellules endocardiques Tbx5+ et le myocarde au niveau du septum primum, afin d’assurer la survie des cardiomyocytes, et ultimement de garantir la maturation du septum inter-auriculaire. Nos résultats confirment aussi l’importance de l’interdépendance génétique (Tbx5 et Gata4 ainsi que Tbx5 et Nos3) entre différents loci dans la morphogenèse de la cloison inter-auriculaire, et particulièrement de l’influence que peut avoir l’environnement sur la pénétrance et l’expressivité des communications inter-auriculaires (CIAs) dans le SHO. En outre, puisque les fonctions d’un gène dépendent ordinairement des différents isoformes qu’il peut générer, une deuxième étude a focalisé davantage sur l’aspect transcriptionnel de Tbx5. Cette approche a mené à la découverte de 6 transcrits alternatifs exhibant des fonctions à la fois communes et divergentes. La caractérisation de 2 de ces isoformes a révélé le rôle de l’isoforme long (Tbx5_v1) dans la régulation de la croissance des cardiomyocytes durant la cardiogénèse, tandis que l’isoforme court (Tbx5_v2), préférentiellement exprimé dans le cœur mature, réprime la croissance cellulaire. Il est donc entièrement concevable que les mutations de TBX5 entraînant une troncation de la région C-terminale accroissent la concentration d’une protéine mutée qui, à l’instar de Tbx5_v2, interfère avec la croissance de certaines structures cardiaques. En revanche, la divergence de fonctions de ces isoformes, caractérisée par les disparités de localisation subcellulaire et de d’interaction avec d’autres cofacteurs cardiaques, suggère que les mutations affectant davantage un isoforme favoriseraient l’émergence d’un type particulier de MCC. Finalement, un dernier objectif était d’identifier le ou les mécanisme(s) moléculaire(s) par le(s)quel(s) Tbx5 régule son principal gène cible, Nppa, et d’en extraire les indices qui éclairciraient sa fonction transcriptionnelle. Cet objectif nécessitait dans un premier lieu d’identifier les différents modules cis-régulateurs (MCRs) coordonnant la régulation transcriptionnelle de Nppa et Nppb, deux gènes natriurétiques dont l’organisation en tandem et le profil d’expression durant la cardiogénèse sont conservés dans la majorité des vertébrés. L’approche d’empreinte phylogénétique employée pour scanner le locus Nppb/Nppa a permis d’identifier trois MCRs conservés entre diverses espèces de mammifères, dont un (US3) est spécifique aux euthériens. Cette étude a corroboré que la régulation de l’expression du tandem génique Nppb/Nppa requérait l’activité transcriptionnelle d’enhancers en complément aux promoteurs de Nppa et Nppb. La concordance quasiment parfaite entre les profils d’expression de Tbx5 et de ces deux gènes natriurétiques chez les mammifères, suggère que le gradient d’expression ventriculaire de Tbx5 est interprété par le recrutement de ce facteur au niveau des différents enhancers identifiés. En somme, les études présentées dans cette thèse ont permis de clarifier la profusion de fonctions cardiaques que possède Tbx5. Certaines de ces fonctions émanent de l’épissage alternatif de Tbx5, qui favorise la synthèse d’isoformes dotés de propriétés spécifiques. Les diverses interactions combinatoires entre ces isoformes et d’autres facteurs cardiaques au sein des diverses sous-populations de progéniteurs cardiogènes contribuent à l’émergence de RRGs cardiaques divergents. / The vertebrate heart is a modular organ, which requires the complex patterning of the morphogenetic heart fields and the coordinated convergence of the diverse subpopulations of cardiogenic progenitors. At least 7 transcription factors of the T-box family cooperate within these numerous subpopulations of cardiogenic progenitors to regulate the morphogenesis and the layout of multiple structures along the primordial heart tube, which explains that the human mutations of these genes induce various congenital heart defects (CHDs). One of these T-box genes, Tbx5, whose haploinsufficiency generates the Holt-Oram syndrome (HOS), intervenes in a wide variety of gene regulatory networks (GRNs) that orchestrate the morphogenesis of the atria, the left ventricle, the mitral valve, the inter-atrial and inter-ventricular septa, as well as the cardiac conduction system. The diversity of GRNs involved in the formation of these cardiac structures suggests that Tbx5 holds a profusion of functions which will be identifiable only by indexing its molecular activities in each separately examined cardiac lineage. To address this problem, a conditional knockout of Tbx5 in the endocardium was generated. This experiment demonstrated a crucial role of Tbx5 in the survival of the endocardial cells lining the septum primum and the cardiomyocytes within this embryonic structure, which will contribute to the morphogenesis of the inter-atrial septum. Moreover, this study revealed a crosstalk between the Tbx5-positive endocardial cells subpopulation and the myocardium at the level of the septum primum to ensure the survival of cardiomyocytes, and ultimately to guarantee the maturation of the inter-atrial septum. Our results also confirmed the importance of genetic interdependence (Tbx5 and Gata4 as well as Tbx5 and Nos3) between different loci in the morphogenesis of the inter-atrial septum, and particularly the influence that the environment can have on the penetrance and the expressivity of atrial septal defects (ASDs) in the HOS. Besides, since the functions of a gene usually depend on the different isoforms it can generate, a second study focused more on the transcriptional aspect of Tbx5. This approach led to the discovery of 6 alternative transcripts exhibiting both common and specific functions. The characterization of 2 of these isoforms revealed the role of the long isoform (Tbx5_v1) in the regulation of cardiomyocytes growth during cardiogenesis, whereas the short isoform (Tbx5_v2), preferentially expressed in the mature heart, represses cell growth. It is thus entirely conceivable that TBX5 mutations leading to a C-terminal truncation increase the concentration of a mutated protein, which, like Tbx5_v2, interferes with the growth of certain cardiac structures. On the other hand, the divergence of functions of these isoforms, characterized by the disparities of subcellular localization and interaction with other cardiac cofactors, suggests that mutations affecting more one isoform would favor the emergence of a particular type of CHD. Finally, a last objective was to identify one or several molecular mechanism(s) by which Tbx5 regulates its main target gene, Nppa, and to extract clues that might clarify its transcriptional function. This objective required in a first place to identify the various cis-regulatory modules (CRMs) coordinating the transcriptional regulation of Nppa and Nppb, two natriuretic genes whose tandem organization and expression pattern during cardiogenesis are preserved in most vertebrates. The phylogenetic footprint approach employed to scan the Nppb/Nppa locus allowed the identification of three CRMs evolutionary conserved between different mammals species, one of which (US3) is specific to eutherians. This study confirmed that the regulation of the tandem genes Nppb/Nppa required the transcriptional activity of enhancers in complement to Nppa and Nppb promoters. The almost perfect concordance between the expression profiles of Tbx5 and these two natriuretic genes in mammals, suggests that the ventricular expression gradient of Tbx5 is interpreted by the recruitment of this factor to the identified enhancers. Altogether, the studies presented in this thesis allowed clarifying the profusion of Tbx5 cardiac functions. Some of these functions emanate from the alternative splicing of Tbx5, which favors the synthesis of isoforms endowed with specific properties. The diverse combinatorial interactions between these isoforms and other cardiac factors within the various cardiogenic progenitor subpopulations contribute to the emergence of distinct cardiac RRGs.

Page generated in 0.0255 seconds