• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 18
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cough Detection and Forecasting for Radiation Treatment of Lung Cancer

Qiu, Zigang Jimmy 06 April 2010 (has links)
In radiation therapy, a treatment plan is designed to make the delivery of radiation to a target more accurate, effective, and less damaging to surrounding healthy tissues. In lung sites, the tumor is affected by the patient’s respiratory motion. Despite tumor motion, current practice still uses a static delivery plan. Unexpected changes due to coughs and sneezes are not taken into account and as a result, the tumor is not treated accurately and healthy tissues are damaged. In this thesis we detail a framework of using an accelerometer device to detect and forecast coughs. The accelerometer measurements are modeled as a ARMA process to make forecasts. We draw from studies in cough physiology and use amplitudes and durations of the forecasted breathing cycles as features to estimate parameters of Gaussian Mixture Models for cough and normal breathing classes. The system was tested on 10 volunteers, where each data set consisted of one 3-5 minute accelerometer measurements to train the system, and two 1-3 minute accelerometer measurements for testing.
22

Cough Detection and Forecasting for Radiation Treatment of Lung Cancer

Qiu, Zigang Jimmy 06 April 2010 (has links)
In radiation therapy, a treatment plan is designed to make the delivery of radiation to a target more accurate, effective, and less damaging to surrounding healthy tissues. In lung sites, the tumor is affected by the patient’s respiratory motion. Despite tumor motion, current practice still uses a static delivery plan. Unexpected changes due to coughs and sneezes are not taken into account and as a result, the tumor is not treated accurately and healthy tissues are damaged. In this thesis we detail a framework of using an accelerometer device to detect and forecast coughs. The accelerometer measurements are modeled as a ARMA process to make forecasts. We draw from studies in cough physiology and use amplitudes and durations of the forecasted breathing cycles as features to estimate parameters of Gaussian Mixture Models for cough and normal breathing classes. The system was tested on 10 volunteers, where each data set consisted of one 3-5 minute accelerometer measurements to train the system, and two 1-3 minute accelerometer measurements for testing.
23

Driver Modeling Based on Driving Behavior and Its Evaluation in Driver Identification

Miyajima, Chiyomi, Nishiwaki, Yoshihiro, Ozawa, Koji, Wakita, Toshihiro, Itou, Katsunobu, Takeda, Kazuya, Itakura, Fumitada January 2007 (has links)
No description available.
24

Wavelet Transform For Texture Analysis With Application To Document Analysis

Busch, Andrew W. January 2004 (has links)
Texture analysis is an important problem in machine vision, with applications in many fields including medical imaging, remote sensing (SAR), automated flaw detection in various products, and document analysis to name but a few. Over the last four decades many techniques for the analysis of textured images have been proposed in the literature for the purposes of classification, segmentation, synthesis and compression. Such approaches include analysis the properties of individual texture elements, using statistical features obtained from the grey-level values of the image itself, random field models, and multichannel filtering. The wavelet transform, a unified framework for the multiresolution decomposition of signals, falls into this final category, and allows a texture to be examined in a number of resolutions whilst maintaining spatial resolution. This thesis explores the use of the wavelet transform to the specific task of texture classification and proposes a number of improvements to existing techniques, both in the area of feature extraction and classifier design. By applying a nonlinear transform to the wavelet coefficients, a better characterisation can be obtained for many natural textures, leading to increased classification performance when using first and second order statistics of these coefficients as features. In the area of classifier design, a combination of an optimal discriminate function and a non-parametric Gaussian mixture model classifier is shown to experimentally outperform other classifier configurations. By modelling the relationships between neighbouring bands of the wavelet trans- form, more information regarding a texture can be obtained. Using such a representation, an efficient algorithm for the searching and retrieval of textured images from a database is proposed, as well as a novel set of features for texture classification. These features are experimentally shown to outperform features proposed in the literature, as well as provide increased robustness to small changes in scale. Determining the script and language of a printed document is an important task in the field of document processing. In the final part of this thesis, the use of texture analysis techniques to accomplish these tasks is investigated. Using maximum a posterior (MAP) adaptation, prior information regarding the nature of script images can be used to increase the accuracy of these methods. Novel techniques for estimating the skew of such documents, normalising text block prior to extraction of texture features and accurately classifying multiple fonts are also presented.
25

Bayesian Networks and Gaussian Mixture Models in Multi-Dimensional Data Analysis with Application to Religion-Conflict Data

January 2012 (has links)
abstract: This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important and growing area of signal processing research over the past decade. Here, we explore the application of statistical modeling and signal processing concepts to data obtained from the Global Group Relations Project, specifically to understand and quantify the effects and interactions of social psychological factors related to intergroup conflicts. We use Bayesian networks to specify prospective models of conditional dependence. Bayesian networks are determined between social psychological factors and conflict variables, and modeled by directed acyclic graphs, while the significant interactions are modeled as conditional probabilities. Since the data are sparse and multi-dimensional, we regress Gaussian mixture models (GMMs) against the data to estimate the conditional probabilities of interest. The parameters of GMMs are estimated using the expectation-maximization (EM) algorithm. However, the EM algorithm may suffer from over-fitting problem due to the high dimensionality and limited observations entailed in this data set. Therefore, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are used for GMM order estimation. To assist intuitive understanding of the interactions of social variables and the intergroup conflicts, we introduce a color-based visualization scheme. In this scheme, the intensities of colors are proportional to the conditional probabilities observed. / Dissertation/Thesis / M.S. Electrical Engineering 2012
26

Effects of nickel and manganese on the embrittlement of low-copper pressure vessel steels

Zelenty, Jennifer Evelyn January 2016 (has links)
Solute clustering is known to play a significant role in the embrittlement of reactor pressure vessel (RPV) steels. When precipitates form they impede the movement of dislocations, causing an increase in hardness and a shift in the ductile-brittle transition temperature. Over time this can cause the steel to become brittle and more susceptible to fracture. Thus, understanding precipitate formation is of great importance to the nuclear industry. The first part of this thesis aims to isolate and better understand the thermal aging component of embrittlement in low copper, model RPV steels. Currently, relatively little is known about the effects of Ni and Mn in a low copper environment. Therefore, it is of interest to determine if Ni and Mn form precipitates under these conditions. To this end, hardness measurements and atom probe tomography were utilized to link the mechanical properties to the microstructure. After 11,690 hours of thermal aging a statistically significant decrease in hardening was observed. Consistent with hardness measurements, no precipitates were present within the matrix of the thermally aged RPV steels. The local chemistry method was then applied to investigate the very early stages of solute clustering. Association was found to be statistically significant in both the thermally aged and as-received model RPV steels. Therefore, no apparent trends regarding the changes in solute association between the as-received and thermally aged RPV steels were identified. Small, non-random clusters were observed at heterogeneous nucleation sites, such as carbide/matrix interfaces and grain boundaries, within the thermally aged material. The clusters found at the carbide/matrix interfaces were all rich in Mn and approximately 90-150 atoms in size. The clusters located along the observed low-angle grain boundary, however, were significantly larger (on the order of hundreds of atoms) and rich in Ni. Lastly, copper-rich precipitates (CRPs) and Mn- and Ni-rich precipitates (MNPs) were observed within the cementite phase of a high copper and low copper RPV steel, respectively, following long term thermal aging. APT was used to characterize these precipitates and obtain more detailed chemical information. The presence of such precipitates indicates that a range of precipitation can take place within the cementite phase of thermally aged RPV steels. The second part of this thesis aims to investigate the effects of ion irradiation on the microstructure of low copper RPV steels via APT. These steels were ion irradiated with 6.4 MeV Fe<sup>3+</sup> ions with a dose rate of 1.5 x 10<sup>-4</sup> dpa/s at 290°C. MNPs were observed in all five of the RPV steels analyzed. These precipitates were found to have nucleated within the matrix as well as at dislocations and grain boundaries. Using the maximum separation method these MNPs were extracted and characterized. Precipitate composition, size, volume fraction, and number density were determined for each of the five samples. Lastly, several grain boundaries were characterized. Several emerging trends were observed within the samples: Ni content within the precipitates did not vary significantly once a threshold between 30-50% was reached; bulk Mn content appeared to dictate Si and Mn content within the precipitates; and samples low in bulk Ni content were characterized by a higher number density of smaller precipitates. Additionally, by regressing precipitate volume fraction against the interaction of Ni and Mn, a linear relationship was found to be statistically significant.
27

ADAPTIVE LEARNING OF NEURAL ACTIVITY DURING DEEP BRAIN STIMULATION

January 2015 (has links)
abstract: Parkinson's disease is a neurodegenerative condition diagnosed on patients with clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated number of patients living with Parkinson's disease around the world is seven to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor signs of Parkinson's disease patients. It is an advanced surgical technique that is used when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation. This work proposes a behavior recognition model for patients with Parkinson's disease. In particular, an adaptive learning method is proposed to classify behavioral tasks of Parkinson's disease patients using local field potential and electrocorticography signals that are collected during DBS implantation surgeries. Unique patterns exhibited between these signals in a matched feature space would lead to distinction between motor and language behavioral tasks. Unique features are first extracted from deep brain signals in the time-frequency space using the matching pursuit decomposition algorithm. The Dirichlet process Gaussian mixture model uses the extracted features to cluster the different behavioral signal patterns, without training or any prior information. The performance of the method is then compared with other machine learning methods and the advantages of each method is discussed under different conditions. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
28

A Machine Learning Recommender System Based on Collaborative Filtering Using Gaussian Mixture Model Clustering

Shakoor, Delshad M., Maihami, Vafa, Maihami, Reza 01 January 2021 (has links)
With the shift toward online shopping, it has become necessary to customize customers' needs and give them more choices. Before making a purchase, buyers research the products' features. The recommender systems facilitate the search task for customers by narrowing down the search space within specific products that align with the customer's needs. A recommender system uses clustering to filter information, calculating the similarity between members of a cluster to determine the factors that will lead to more accurate predictions. We propose a new method for predicting scores in machine learning recommender systems using the Gaussian mixture model clustering and the Pearson correlation coefficient. The proposed method is applied to MovieLens data. The results are then compared to three commonly used methods: Pearson correlation coefficients, K-means, and fuzzy C-means algorithms. As a result of increasing the number of neighbors, our method shows a lower error than others. Additionally, the results depict that accuracy will increase as the number of users increases. Our model, for instance, is 5% more accurate than existing methods when the neighbor size is 30. Gaussian mixture clustering chooses similar users and takes into account the scores distance when choosing nearby users that are similar to the active user.
29

Noise sources in robust uncompressed video watermarking / Les sources de bruit dans le tatouage robuste de vidéo non-compressée

Dumitru, Corneliu Octavian 11 January 2010 (has links)
Cette thèse traite de ce verrou théorique pour des vidéos naturelles. Les contributions scientifiques développées ont permis : 1. De réfuter mathématiquement le modèle gaussien en général adopté dans la littérature pour représenter le bruit de canal ; 2. D’établir pour la première fois, le caractère stationnaire des processus aléatoires représentant le bruit de canal, la méthode développée étant indépendante du type de données, de leur traitement et de la procédure d’estimation ; 3. De proposer une méthodologie de modélisation du bruit de canal à partir d’un mélange de gaussiennes pour une transformée aussi bien en cosinus discrète qu’en ondelette discrète et pour un large ensemble d’attaques (filtrage, rotation, compression, StirMark, …). L’intérêt de cette approche est entre autres de permettre le calcul exact de la capacité du canal alors que la littérature ne fournissait que des bornes supérieure et inférieure. 4. Les contributions technologique concernent l’intégration et l’implémentions de ces modèles dans la méthode du tatouage IProtect brevetée Institut Télécom/ARTEMIS et SFR avec un gain en temps d’exécution d’un facteur 100 par rapport à l’état de l’art. / The thesis is focus on natural video and attack modelling for uncompressed video watermarking purposes. By reconsidering a statistical investigation combining four types of statistical tests, the thesis starts by identifying with accuracy the drawbacks and limitations of the popular Gaussian model in watermarking applications. Further on, an advanced statistical approach is developed in order to establish with mathematical rigour: 1. That a mathematical model for the original video content and/or attacks exists; 2. The model parameters. From the theoretical point of view, this means to prove for the first time the stationarity of the random processes representing the natural video and/or the watermarking attacks. These general results have been already validated under applicative and theoretical frameworks. On the one hand, when integrating the attack models into the IProtect watermarking method patented by Institut Télécom/ARTEMIS and SFR, a speed-up by a factor of 100 of the insertion procedure has been obtained. On the other hand, accurate models for natural video and attacks allowed the increasing of the precision in the computation of some basic information theory entities (entropies and capacity).
30

The Single Imputation Technique in the Gaussian Mixture Model Framework

Aisyah, Binti M.J. January 2018 (has links)
Missing data is a common issue in data analysis. Numerous techniques have been proposed to deal with the missing data problem. Imputation is the most popular strategy for handling the missing data. Imputation for data analysis is the process to replace the missing values with any plausible values. Two most frequent imputation techniques cited in literature are the single imputation and the multiple imputation. The multiple imputation, also known as the golden imputation technique, has been proposed by Rubin in 1987 to address the missing data. However, the inconsistency is the major problem in the multiple imputation technique. The single imputation is less popular in missing data research due to bias and less variability issues. One of the solutions to improve the single imputation technique in the basic regression model: the main motivation is that, the residual is added to improve the bias and variability. The residual is drawn by normal distribution assumption with a mean of 0, and the variance is equal to the residual variance. Although new methods in the single imputation technique, such as stochastic regression model, and hot deck imputation, might be able to improve the variability and bias issues, the single imputation techniques suffer with the uncertainty that may underestimate the R-square or standard error in the analysis results. The research reported in this thesis provides two imputation solutions for the single imputation technique. In the first imputation procedure, the wild bootstrap is proposed to improve the uncertainty for the residual variance in the regression model. In the second solution, the predictive mean matching (PMM) is enhanced, where the regression model is taking the main role to generate the recipient values while the observations in the donors are taken from the observed values. Then the missing values are imputed by randomly drawing one of the observations in the donor pool. The size of the donor pool is significant to determine the quality of the imputed values. The fixed size of donor is used to be employed in many existing research works with PMM imputation technique, but might not be appropriate in certain circumstance such as when the data distribution has high density region. Instead of using the fixed size of donor pool, the proposed method applies the radius-based solution to determine the size of donor pool. Both proposed imputation procedures will be combined with the Gaussian mixture model framework to preserve the original data distribution. The results reported in the thesis from the experiments on benchmark and artificial data sets confirm improvement for further data analysis. The proposed approaches are therefore worthwhile to be considered for further investigation and experiments.

Page generated in 0.0501 seconds