• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast optical studies of phonons and phase transitions in Ge2Sb2Te5 thin films

Shalini, Ashawaraya January 2013 (has links)
This dissertation reports the results of optical studies of epitaxial (e), polycrystalline (p) and amorphous (a) Ge2Sb2Te5 (GST) thin films. The dynamic properties of GST films in all three (e/p/a) phases were investigated by a time-resolved optical pump-probe technique in which a femtosecond pump pulse of 55 fs duration was used to excite the sample. The intensity and polarization of the reflected probe beam respectively provide information about the transient reflectance (R) and anisotropic reflectance (AR) induced in the sample, that in turn provide the information about the crystal structure, phonon spectrum, and ultimately phase transitions within the sample. The study of an epitaxial sample provides an opportunity to explore the character of the modes within the phonon spectrum. The epitaxial GST film was grown upon a homoepitaxial layer of GaSb grown upon a GaSb wafer. We observed a 6.7 THz coherent optical phonon (COP) in GaSb(001). The dependence of the signal strength upon the pump and probe polarization was explained in terms of a model that considered both Transient stimulated Raman Scattering (TSRS) and the action of a Surface Space-Charge (SSC) field. The presence of the 6.7 THz transverse COP in the AR channel and its four fold dependence on pump and probe polarization suggests a three-dimensional T2 character. The COP amplitude was maximum when the probe was polarized parallel to the cube edge (GaSb[100]) and the pump polarization was set parallel to a face diagonal (GaSb[110]). The results were fully understood using a microscopic model of selective bond breaking. The AR response of e-GST/GaSb(001) reveals the presence of a 3D 3.4 THz transverse optical phonon. The mode amplitude was independent of pump polarization indicating that the mode is excited by a SSC field. This SSC field could exist within the GST, if the distorted rock-salt structure of GST lacks inversion symmetry, or GaSb, which has the non-centrosymmetric zincblende structure, leading to impulsive excitation of phonons at the GST/GaSb interface. The mode in GST was inferred to be T2-like. The observation of a T2-like phonon mode confirms that GST is cubic in structure and challenges previous studies where 1D or 2D character was assigned to the 3.4 THz mode. While pump-probe measurements displayed the presence of a 3D 3.4 THz mode in the AR response of e-GST/GaSb(001), a 4.5 THz mode was observed in both R and AR channels for p-GST(37 nm)/Si(001) and a-GST(57 nm)/Si(001). The mode character was identified to be either of A or E type by comparing the frequency with frequencies reported in the literature. Additional Raman microscope measurements confirmed the presence of the modes observed in the pump-probe measurements and also revealed additional frequencies. The differences in the frequencies observed from the different samples are quite small suggesting the presence of similar bonds that are modified to some extent by the different structural environment found within each sample. After exposure to high pump fluence the original modes disappeared and were replaced by new modes with frequencies at 4.2 THz and 3.1 THz in e-GaSb, 4.2 THz in e-GST, 3.5 THz in p-GST and 3.6 THz in a-GST. The difference in the final frequencies observed for p and a-GST sample may result from the difference in stack structure affecting the time-dependent temperature profile in each sample. The dependence of the temperature profile on the sample stack was understood from an experimental study of the phase transition between the amorphous and crystalline states induced by exposure to a series of amplified laser pulses. The dependence of the crystalline area and its reflectivity upon the number of pulses and fluence was described using a simple algebraic model. The results justify the assumption of one-dimensional heat flow. The growth velocity of the crystalline region was calculated to be 7-9 m/s. Apparatus and methods were developed to extend the time-resolved optical studies described previously. Firstly, an apparatus was constructed for the measurement of the wavelength dependent sample reflectance with a white-light pulse. A reference arm was employed to allow normalization and hence removal of the intensity noise arising in the laser regenerative amplifier system. Secondly an electrical measurement apparatus was constructed to allow combined electro-optical measurements in future. Switching of GST vertical memory cells was successfully demonstrated. The cells were fabricated on a borosilicate substrate with TiW top and bottom electrodes. A DC voltage of 4.5 to 6 V was required to induce switching, while in pulsed measurements, the device demonstrated switching in response to a pulse with minimum duration of 100 ns.
2

Intermediate Phase, Molecular Structure, Aging and Network Topology of Ternary Ge<sub>x</sub>Sb<sub>x</sub>Se<sub>100-2x</sub> Glasses

Gunasekera, Kapila J. 03 August 2010 (has links)
No description available.
3

Study of mixed mode electro-optical operations of Ge2Sb2Te5

Hernandez, Gerardo Rodriguez January 2017 (has links)
Chalcogenide based Phase Change Materials are currently of great technological interest in the growing field of optoelectronics. Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST) is the most widely studied phase change material, and it has been commercially used in both optical and electronic data storage applications, due to its ability to switch between two different atomic configurations, at high speed and with low power consumption, as well as its high optical and electrical contrast between amorphous and crystalline states. Despite its well-known optical and electrical properties, the operation in combination of optical and electrical domains has not yet been fully investigated. This work studies the operation of GST nano-devices exposed to a combination of optical and electrical stimuli or mixed mode by asking, is it possible to electrically measure an optically induced phase change, or vice versa? If so, how do the optical and electrical responses relate to each other, and is it possible to operate GST with a combination of optical and electrical signals? What are the technical constraints that need to be considered in order to fabricate GST devices that could be operated either optically or electrically? In order to answer these questions, experiments that characterized the optical and electrical responses of GST based nano-devices were performed. It was found that different crystallization mechanisms may have influence in the response, and that the thermal and optical design characteristics of the device play a key role in its operation. Finally a proof of principle, of an opto-electonic memory device that can be read electrically, reset optically and write electrically, is presented. This opens up possibilities for the development of new opto-eloectronic applications such as non-volatile interfaces between future photonics and electronics, high speed optical communication detectors, high speed cameras, artificial retinas and many more.
4

Conception et réalisation de commutateurs RF à base de matériaux à transition de phase (PTM) et à changement de phase (PCM) / Design and realization of RF switches based on phase transition (PTM ) and phase change (PC M) materials

Mennai, Amine 11 March 2016 (has links)
Ces travaux de recherche portent sur la conception et la réalisation de commutateurs RF basées sur l’intégration de matériaux innovants fonctionnels tels que le dioxyde de vanadium (VO2) et les alliages de chalcogénures de types Ge2Sb2Te5 (GST) et GeTe. Le principe de fonctionnement de ces composants repose sur le changement de résistivité que présentent ces matériaux. Le VO2 possède une transition Isolant-Métal (MIT) autour de 68°C à travers laquelle le matériau passe d’un état isolant (forte résistivité) à un état métallique (faible résistivité). La transition MIT présente l’intérêt de pouvoir être initiée sous l’effet de plusieurs types de stimuli externes (thermique, électrique et optique) avec de faibles temps de commutation. Les alliages de types GST et GeTe ont la particularité de commuter réversiblement entre un état amorphe à forte résistivité à un état cristallin à faible résistivité suite à un traitement thermique spécifique. Les commutateurs à base de GST ou de GeTe présentent l'avantage de pouvoir opérer en mode bistable car le changement de résistivité présenté par ces matériaux est de type non volatile. Les composants réalisés ont de bonnes performances électriques (isolation et pertes d’insertion) sur une large bande. Nos travaux de recherche visent à proposer une solution alternative aux solutions classiques (semi-conducteurs et MEMS-RF) pour réaliser des commutateurs RF qui peuvent être par la suite utilisés dans la conception des dispositifs reconfigurables (filtres, Antennes). / This research work focuses on the design and realization of RF switches based on the integration of new materials such as vanadium dioxide (VO2), Ge2Sb2Te5 (GST) and GeTe chalcogenides alloys. The operating principle of these devices is based on the resistivity change presented by these materials. VO2 exhibits a Metal-Insulator transition (MIT) around 68°C for which the material changes from an insulating state (high resistivity) to a metallic one (low resistivity). The MIT transition can be triggered in different ways (thermally, electrically and optically) with low switching time. GST and GeTe alloys have the particularity to be reversibly switched between a high resistive-amorphous state to low resistive-crystalline state, under a specific heat treatment. Thanks to the non-volatile resistivity change presented by these materials, GST/GeTe-based switches are able to operate in bistable mode. The fabricated devices exhibit good electrical performances (insertion loss and isolation) over a broadband. The aim of our work is to propose an alternative solution to conventional technologies (semiconductors and RF-MEMS), to design RF switches that can be used afterward in the design of reconfigurable devices (filters, antennas).
5

Study of Light Emission from GeSbTe Phase-Change Materials Due to Doping

Hilton, Brandon J. 20 December 2022 (has links)
No description available.
6

Investigations of Phase Change Memory Properties of Selenium Doped GeTe and Ge2Sb2Te5

Vinod, E M January 2013 (has links) (PDF)
GeTe and Ge2Sb2Te5 alloys are potential candidates for non-volatile phase change random access memories (PCRAM). For electrical data storage applications the materials should have stable amorphous and crystalline phases, fast crystallization time, low power to switch, and high crystallization activation energy (to be stable at normal operating temperatures). Phase change memories can be tuned through compositional variations to achieve sufficient phase change contrast and thermal stability for data retention. Selenium is one of the attractive choices to use as an additive material owing to its flexible amorphous structure and a variety of possible applications in optoelectronics and solar cells. GeSb2Te3Se alloy, in which 25 at.% of Se substituted for Te, show a higher room temperature resistance with respect to parent GeSb2Te4 alloy, but the transition temperature is lowered which will affect the thermal stability. The RESET current observed for Sb65Se35 alloys were reduced and the crystallization speed increased 25 % faster with respect to Ge2Sb2Te5. Alloys of Ga-Sb-Se possess advantages such as higher crystallization temperatures, better data retention, higher switching speed, lower thermal conductivity and lower melting point than the GST, but the resistance ratio is limited to about two orders of magnitude. This affects the resistance contrast and data readability. It is with this background a study has been carried out in GeTe and GeSbTe system with Se doping. Studies on structural, thermal and optical properties of these materials all through the phase transition temperatures would be helpful to explore the feasibility of phase change memory uses. Thin films along with their bulk counterparts such as (GeTe)1-x Sex ( 0 < x ≤ 0.50) and (GST)1-xSex (0 < x ≤ 0.50), including GeTe and GST alloys, have been prepared. The results are presented in four chapters apart from the Introduction and Experimental techniques chapters. The final chapter summarizes the results. Chapter 1 provides an introduction to chalcogenide glasses, phase change memory materials and their applications. The fundamental properties of amorphous solids, basic phase change properties of Ge2Sb2Te5 and GeTe alloys and their applications are presented in detail. Various doping studies on GeTe and Ge2Sb2Te5 reported in literatures are reviewed. The limitations, challenges, future and scope of the present work are presented. In chapter 2, the experimental techniques used for thin film preparation, electrical characterizations, optical characterization and surface characterizations etc. are explained. Chapter 3 deals entirely on Ge2Sb2Te5 films studied throughout the phase transition, by annealing at different temperatures. Changes in sheet resistance, optical transmission, morphology and surface bonding characteristics are analyzed. The crystallization leads to an increase of roughness and the resistance changes to three orders of magnitude at 125 oC. Optical studies show distinct changes in transmittance during phase transitions and the optical parameters are calculated. Band gap contrast and disorder variation with annealing temperatures are explained. The surface bonding characteristics studied by XPS show Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases. The temperature dependent modifications of the band structure of amorphous GST films at low temperatures have been little explored. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature 300 K. Other optical parameters like Urbach energy and B1/2 are studied at different temperatures and are evaluated. The observed changes in optical band gap (Eopt) are fitted to Fan’s one phonon approximation, from which a phonon energy (ћω) corresponding to a frequency of 3.59 THz resulted. The frequency of 3.66 THz optical phonons has already been reported by coherent phonon spectroscopy experiment in amorphous GST. This opens up an indirect method of calculating the phonon frequency of the amorphous phase change materials. Chapter 4 constitutes comparison of optical, electrical and structural investigation of GST and (GST)1-xSex films. It is well known that GST alloys have vacancy in their structure, which leads to the possibility of switching between the amorphous and crystalline states with minimum damage. Added Se may occupy the vacancy or change the bonding characteristics which intern may manifest in the possibility of change in optical and electrical parameters. The structural studies show a direct amorphous to hexagonal transition in (GST)1-xSex, where x ≥ 0.10 at.%. Raman spectra of the as deposited and annealed (GST)1-xSex films show structural modifications. The infrared transmission spectra indicate a shift in absorption edges from low to high photon energy when Se concentration increases in GST. Band gap values calculated from Tauc plot show the band gap increment with Se doping. It is noted that a small amount of Se doping increases the resistance of the amorphous and crystalline phases and maintains the same orders of resistance contrast. This will be beneficial as it improves the thermal stability and reduces the write current in a device. Switching studies show an increasing threshold voltage as the Se doping concentration increases. Chapter 5 comprises compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations. The XRD investigations on bulk (GeTe)1-xSex (x = 0.0, 0.02, 0.10, 0.20 and 0.50 at.%) alloys show that the crystalline structure of GeTe alloys does not affect ≤ 0.20 at.% of Se concentration. With increasing amount of Se concentration the alloys gets modified in to a homogeneous amorphous structure. This result has been verified from the XRD, Raman, XPS, SEM and DSC measurements. The possibility that Se occupying the Ge vacancy sites in GeTe structure is explained. Since Se is an easy glass former, the amorphousness increases in the alloys due to new amorphous phases formed by the Se with other elements. It is shown from Raman and XPS analysis that the Ge-Te bonds exists up to Se 0.20 at.% alloys. Ge-Se and GeTe2 bonds are increasing with increasing Se at.%. Melting temperature has found decreases and the reduction in melting point may reduces the RESET current. Further studies on switching behavior may bring out its usefulness. Chapter 6 deals with studies on (GeTe)1-xSex films for phase change memory applications based on the insight received from their bulk study. Even at low at.% addition of Se makes the as prepared (GeTe)1-xSex film amorphous. At 200 oC, GeTe crystalline structure is evolved and the intensity of the peaks reduces in the alloys with increase of Se content. At 300 oC, more evolved GeTe crystalline structure is seen compared to 200 oC annealed films whereas 0.20 at.% Se alloy remain amorphous. Resistance and thermal studies shows increase in crystallization temperature. It is expected that Se sits in the vacancies of the GeTe crystalline structural formation. This may also account for the increased threshold voltages with increasing Se doping. The band gap increase with increase of Se at.% signifying the possibility of band gap tuning in the material. Possible explanation for the increased order in GeTe due to Se doping is presented. The modifications in the alloy with Se addition can be explained with the help of chemical bond energy approach. Those bonds having higher energy leads to increased average bond energy of the system and hence the band gap. The XPS core level spectra and Raman spectra investigation clearly shows the GeTe bonds are replaced by Ge-Se bonds and GeTe2 bonds. The 0.10 at.% Se alloy is found to have a higher thermal stability in the amorphous state and maintains a gigantic resistance contrast compared to other Se concentration alloys. This alloy can be considered as an ideal candidate for multilevel PCM applications. Chapter 7 summarizes the major findings from this work and the scope for future work.

Page generated in 0.0174 seconds