• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 14
  • 11
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse théorique et physique de nouveaux matériaux à base de chalcogénures convenant aux Mémoires à Changements de Phases / Physical analysis of materials for Phase-Change Memories applications

Bastard, Audrey 05 September 2012 (has links)
Les mémoires à changement de phase (PCRAM) sont l'un des candidats les plus prometteurs pour la prochaine génération de mémoires non-volatiles du fait de leurs excellentes vitesses de fonctionnement et endurance. Cependant, deux inconvénients majeurs nécessitent une amélioration afin de permettre leur percée sur le marché des mémoires, à savoir un temps de rétention court à hautes températures et une consommation électrique trop importante. Cette thèse s'intéresse au développement de nouveaux matériaux à changement de phase afin de remplacer le matériau standard Ge2Sb2Te5, inadapté aux applications mémoires embarquées fonctionnant à hautes températures. Le comportement des matériaux binaires GeTe et GeSb a ainsi été évalué et comparé au matériau référence lors de la cristallisation de l'amorphe 'tel que déposé' mais aussi de l'amorphe 'fondu trempé'. En effet, il est important d'étudier le matériau dans son état amorphe 'fondu trempé' pour être au plus près de l'état du matériau cyclé dans les dispositifs. Ainsi, le mécanisme de cristallisation du GeTe déterminé par l'étude de la cristallisation de l'amorphe 'fondu trempé' par recuit laser est en accord avec l'observation MET in situ (recuit thermique) de la cristallisation. L'incorporation d'éléments 'dopants' dans ces matériaux binaires a également été évaluée afin d'augmenter à nouveau la stabilité thermique des matériaux non dopés. Certains éléments 'dopants' permettent une diminution du courant de reset, ou un retard à la formation de 'voids' au cours des cycles. / Phase Change Memories are suitable for the next generation of non volatiles memories due to high programmation speed and endurance. However, two major improvements need to be made in order to enter memories market, the short retention time at high temperature, and the important electric consumption. This thesis focuses on the development of new phase change materials to replace the reference material, Ge2Sb2Te5, insuitable for embedded memories applications working at high temperatures. The behavior of binary compounds GeTe and GeSb has been investigated and compared to the reference material during both the crystallization of the « as deposited » amorphous and the « melt quenched » amorphous materials. Indeeed it is important to study the « melt quenched » amorphous state of the material to be as close as possible to the cycled material in the devices. So, the crystallization mechanism of GeTe checked by the crystallization study of the amorphous « melt quenched » by laser annealing is in agreement with the in situ TEM observation (thermal annealing) of the crystallization. The addition of “doping” elements in the binary compounds has also been performed to improve the thermal stability of amorphous undoped materials. These “doping” elements allow a current reset decrease, or a later formation of « voids » during cycling.
2

Super-réseaux GeTe/Sb2Te3 pour les mémoires iPCM : croissance PVD par épitaxie van der Waals et étude de leur structure / GeTe/Sb2Te3 superlattices for iPCM memories : PVD growth by van der Waals epitaxy and study of their structure

Kowalczyk, Philippe 13 December 2018 (has links)
Afin de faire face à la demande croissante de mémoires de plus en plus performantes dans les systèmes informatiques, de nouvelles technologies se sont développées. Parmi elles, les mémoires résistives à changement de phase (ou PCM pour Phase-Change Memory) ont des propriétés et une maturité suffisante pour développer les nouvelles mémoires SCM (pour Storage Class Memory) comme en témoigne la récente commercialisation des produits Optane par la firme INTEL®. Néanmoins, la consommation énergétique des PCM lors de leur programmation reste élevée, ce qui limite leurs performances. L’intégration de super-réseaux (GeTe)2/(Sb2Te3)m dans des mémoires dites iPCM (pour interfacial Phase-Change Memory) est une des voies les plus prometteuse pour permettre une diminution significative des courants de programmation. Cependant, le mécanisme de transition des iPCM et la structure du matériau dans ses deux états de résistances sont encore méconnus. Dans ce contexte, l’objectif de cette thèse est d’élaborer des super-réseaux (GeTe)2/(Sb2Te3)m (m=1,2,4 et 8) cristallins, de déterminer leur structure puis de les intégrer dans des dispositifs mémoires. La pulvérisation cathodique alternée des matériaux GeTe et Sb2Te3 dans un équipement industriel de dépôt est utilisée pour effectuer l’épitaxie van der Waals de ces super-réseaux. Une optimisation du procédé par l’ajout d’une cible de Te en co-pulvérisation avec la cible de Sb2Te3 montre l’obtention de super-réseaux stœchiométriques présentant la périodicité souhaitée, ainsi qu’une orientation des plans cristallins (0 0 l) parallèle à la surface du substrat. Une description de l’ordre atomique local des super-réseaux ainsi optimisés est ensuite menée par l’étude d’images HAADF-STEM couplée à des simulations. Celle-ci révèle un phénomène d’inter-diffusion entre les couches de GeTe et de Sb2Te3 déposées aboutissant à la formation locale de GexSbyTez rhomboédriques, des mesures quantitatives de l’occupation des plans atomiques en Ge/Sb confirment aussi le phénomène. De plus, un modèle de structure à longue distance de ces super-réseaux considérant un empilement aléatoire de blocs cristallins permet la simulation des courbes de diffraction obtenues expérimentalement. Enfin, les premières intégrations des super-réseaux (GeTe)2/(Sb2Te3)m dans des dispositifs mémoires mettent en évidence une réduction importante des courants de programmation jusqu’à 4 fois inférieurs à une PCM et avec une endurance dépassant les 10 millions cycles. / In order to satisfy the demand for more and more efficient memory in computer systems, new technologies have been developed. Among the latter resistive phase-change memories (PCM) exhibit capacities and sufficient maturity to achieve the so-called new SCM (for Storage Class Memory) devices as evidenced by the recent commercialization of Optane products by INTEL®. Nevertheless, PCM still require strong electrical consumption limiting their performance. Integration of (GeTe)2/(Sb2Te3)m superlattices in so-called iPCM (for interfacial Phase Change Memory) was shown to permit a significant decrease in programming currents. However, the switching mechanism of this memory and the structure of the material in its two resistance states are still under debate. The aim of this thesis is therefore to deposit crystalline (GeTe)2/(Sb2Te3)m (m=1,2,4 et 8) superlattices, to determine their structure and to integrate them into memory devices. GeTe and Sb2Te3 materials are alternately deposited by means of sputtering in an industrial deposition tool to perform van der Waals epitaxy of these superlattices. Stoichiometric superlattices with the desired periodicity and with an orientation of the (0 0 l) crystalline planes parallel to the surface of the substrate are obtained by innovative co-sputtering of Sb2Te3 and Te targets during Sb2Te3 deposition. A description of the local atomic order of superlattices is then carried out by studying HAADF-STEM images coupled to simulations. Intermixing between GeTe and Sb2Te3 deposited layers is thus revealed, leading to the local formation of rhombohedral GexSbyTez. Quantitative measurements of the Ge/Sb atomic plans occupation in further confirm the phenomenon. A long-range order structural model of superlattices by means of random stacking of crystalline blocks allows the simulation of experimental diffraction curves. Finally, the first integrations of (GeTe)2/(Sb2Te3)m (with m=1,2,4 et 8) superlattices in devices demonstrate a programming current up to 4 times lower than a PCM reference with an endurance exceeding 10 millions cycles.
3

Novel chalcogenide based glasses, ceramics and polycrystalline materials for thermoelectric application / Développement de verres, vitro-céramiques et céramiques de chalcogénures pour des applications en thermoélectricité

Srinivasan, Bhuvanesh 10 December 2018 (has links)
L'intérêt porté au développement de matériaux thermoélectriques est grandissant car ils permettent de créer des sources d'énergie renouvelable, dites « vertes », ce qui s'inscrit pleinement dans la stratégie de lutte contre le réchauffement climatique. A ce jour le rendement de tels systèmes reste faible, le coût de développement élevé, et les plages de températures d'utilisation sont limitées. Dans ces travaux de thèse différentes pistes sont explorées pour développer des matériaux innovants à base de chalcogènes, principalement le tellure. Les principaux résultats portent sur les points suivants. (i) Une étude par spectroscopies couplée à des calculs théoriques a permis de mieux comprendre les phénomènes de conduction dans les verres du système Cu-As-Te. (ii) La recristallisation complète de verres de formulation Ge20Te77Se3 dopés a été réalisée pour pousser à son terme la logique dite du Phonon Glass Electron Crystal (PGEC).(iii) Différents modes de synthèses ont été mis en œuvre pour suivre les propriétés thermoélectriques de matériaux de formulation CuPb18SbTe20 (frittage, SPS, flash-SPS, hybrid flash-SPS). (iv) Accroissement de 170% des performances d'alliage du système Pb-Sb-Te en générant des vacances de sites (composés non-stœchiométriques). (v) Le suivi des conséquences du dopage de GeTe par un seul élément a montré la nécessité d'un co-dopage pour simultanément accroître la conductivité électronique et le Seebeck. (vi) Le co-dopage In-Bi de GeTe a permis de créer des niveaux résonants (In) et d'accroitre la diffusion thermique (Bi). (vii) Enfin, le résultat le plus remarquable porte sur le co-dopage Ga-Sb de GeTe qui permet d'effectuer de l'ingénierie de structure de bandes. Couplé à une synthèse par hybrid flash SPS ces matériaux prometteurs permettent d'obtenir un zT 2 sur une large gamme de température (600–773 K). / With the performance of direct conversion between thermal and electrical energy, thermoelectric materials, which are crucial in the renewable energy conversion roadmap, provide an alternative for power generation and refrigeration to solve the global energy crisis. But the low efficiency of the current materials, their usual costs, availability, and limited working temperatures, drastically constrain their application. Hence, the search for new and more efficient thermoelectric materials is one of the most dynamic objectives of this thesis. The key milestones achieved from this thesis work includes: (i) elucidating the mechanism for hole conductivity in Cu-As-Te glasses by X-ray absorption spectroscopy and quantum simulations; (ii) formulating a novel approach to achieve phonon-glass electron-crystal mechanism by crystallizing the Ge20Te77Se3 glasses by excess doping with metals or semi-metals (glass-ceramics); (iii) demonstrating the effect of processing route on the thermoelectric performance of CuPb18SbTe20 and highlighting the advantage of hybrid-flash spark plasma sintering technique, i.e., better optimization of electrical and thermal transport properties and achieving multi-scale hierarchical architectures; (iv) improving the thermoelectric performance of Pb-Sb-Te alloys (enhancement by 170%) by tuning their cation vacancies (Pb deficiencies); (v) understating the impact of doping just a group-11 coinage metal, or group-13 element on GeTe solid-state solution and recapitulating the need for pair substitution; (vi) substantially enhancing the average zT of In-Bi codoped GeTe; (vii) achieving a remarkably high and stable zT of close to 2 over a wide temperature range (600 – 773 K) by manipulating the electronic bands in Ga-Sb codoped GeTe, which has been processed by hybrid flash-spark plasma sintering, thus making it a serious candidate for energy harvesting systems.
4

Étude des matériaux à changement de phase pour application dans le domaine des PCRAM : verres infrarouges pour l'optique spatiale

Bastien, Jean-Claude 16 December 2011 (has links) (PDF)
Les mémoires électriques à changement de phase (PCRAM) sont reconnues comme étant très prometteuses pour s'imposer comme la prochaine génération de mémoires non-volatiles du fait de leurs excellentes vitesses de fonctionnement et endurance. Cependant, deux problèmes majeurs doivent être résolus pour permettre leur percée sur le marché des mémoires, à savoir une durée de rétention de l'information faible aux températures élevées et une consommation électrique encore trop importante. Au cours de ce travail de thèse, plusieurs nouveaux matériaux à changement de phase à base d'éléments chalcogènes ont été étudiés an d'adresser le marché des mémoires embarquées fonctionnant à hautes températures. Les propriétés du matériau GeTe ont ainsi été comparées à celle du matériau référence Ge₂Sb₂Te₅ et l'inuence du dopage en azote, carbone ou bore dans le matériau GeTe a été estimée. Il a été constaté une large amélioration de la stabilité thermique de la phase amorphe GeTe comparée à celle de Ge₂Sb₂Te₅, effet exacerbé par le dopage. Le processus de fabrication d'un empilement inédit est décrit et l'impact du connement sur la consommation énergétique a été évalué sur le matériau Ge₂Sb₂Te₅ par le biais d'une analyse par microscopie à force atomique en mode électrique. Un élargissement du travail de thèse a été réalisé en s'intéressant aux verres de chalcogénures infrarouges pour l'optique spatiale. Il est constaté que l'addition d'iodure d'argent aux systèmes vitreux GeTe et GaGeTe permet d'améliorer leurs stabilités thermiques et d'accroître leurs fenêtres de transmission infrarouge.
5

Développement et élaboration par MOCVD de matériaux à changement de phase à base d'alliages GeTe : applications aux mémoires embarquées pour la microélectronique

Gourvest, Emmanuel 13 December 2010 (has links) (PDF)
Les mémoires à changement de phase électroniques (PCRAM) sont l'un des candidats les plus prometteurs pour la prochaine génération de mémoires non-volatiles. Cette technologie présente cependant deux inconvénients majeurs : un temps de rétention de l'information court pour des températures de fonctionnement élevées et une consommation électrique trop importante. Le premier objectif de ce travail a été de développer de nouveaux matériaux à changement de phase par PVD pour remplacer le traditionnel Ge2Sb2Te5, inadapté pour des applications embarquées. Le second objectif a été d'élaborer le matériau sélectionné par MOCVD assisté plasma afin d'évaluer la faisabilité de dispositifs confinés nécessitant des courants de fonctionnement faibles. L'étude du matériau binaire GeTe a montré des performances supérieures à celles de Ge2Sb2Te5 avec notamment une estimation du temps de rétention de l'information de dix ans à 110°C. L'impact de l'incorporation d'éléments dopants N ou C dans GeTe a été évalué en prévision du développement MOCVD. Il a été démontré une nette augmentation de la stabilité thermique des matériaux dopés, que nous expliquons par la formation d'une phase amorphe de type nitrure ou carbure lors de la cristallisation. L'utilisation d'un système de dépôt MOCVD par injection pulsée avec assistance plasma a permis de réaliser des couches minces conformes de GeTe à l'état cristallin ou amorphe, présentant des propriétés de transition de phase similaires à celles de GeTe de référence élaboré par PVD.
6

Analyse théorique et physique de nouveaux matériaux à base de chalcogénures convenant aux Mémoires à Changements de Phases

Bastard, Audrey 05 September 2012 (has links) (PDF)
Les mémoires à changement de phase (PCRAM) sont l'un des candidats les plus prometteurs pour la prochaine génération de mémoires non-volatiles du fait de leurs excellentes vitesses de fonctionnement et endurance. Cependant, deux inconvénients majeurs nécessitent une amélioration afin de permettre leur percée sur le marché des mémoires, à savoir un temps de rétention court à hautes températures et une consommation électrique trop importante. Cette thèse s'intéresse au développement de nouveaux matériaux à changement de phase afin de remplacer le matériau standard Ge2Sb2Te5, inadapté aux applications mémoires embarquées fonctionnant à hautes températures. Le comportement des matériaux binaires GeTe et GeSb a ainsi été évalué et comparé au matériau référence lors de la cristallisation de l'amorphe 'tel que déposé' mais aussi de l'amorphe 'fondu trempé'. En effet, il est important d'étudier le matériau dans son état amorphe 'fondu trempé' pour être au plus près de l'état du matériau cyclé dans les dispositifs. Ainsi, le mécanisme de cristallisation du GeTe déterminé par l'étude de la cristallisation de l'amorphe 'fondu trempé' par recuit laser est en accord avec l'observation MET in situ (recuit thermique) de la cristallisation. L'incorporation d'éléments 'dopants' dans ces matériaux binaires a également été évaluée afin d'augmenter à nouveau la stabilité thermique des matériaux non dopés. Certains éléments 'dopants' permettent une diminution du courant de reset, ou un retard à la formation de 'voids' au cours des cycles.
7

Etude de commutateurs hyperfréquences bistables à base des matériaux à changement de phase (PCM) / Study of bi-stables microwave switch based on phase change materials (PCM)

Hariri, Ahmad 11 March 2019 (has links)
Les travaux présentés dans ce manuscrit portent sur la conception, simulation et réalisation des nouvelles structures des commutateurs hyperfréquences basées sur l’intégration des couches minces des matériaux innovants fonctionnels tels que les matériaux à changement de phase (PCM) et les matériaux à transition de phase (PTM). Le principe de fonctionnement de ces composants repose sur le changement de résistivité présenter par ces matériaux. Nous avons exploité le changement de résistivité réversible du GeTe de la famille des matériaux à changement de phase (PCM) entre les deux états : amorphe à forte résistivité et cristallin à faible résistivité, pour réaliser une nouvelle structure d’un simple commutateur SPST. Ensuite, nous avons intégré ce commutateur dans une nouvelle structure de la matrice de commutation DPDT (Double Port Double Throw) à base de PCM pour l’application dans la charge utile du satellite. Nous avons utilisé la transition isolant-métal présenté par le dioxyde de vanadium (VO2) de la famille des matériaux à transition de phase, pour réaliser une nouvelle structure de commutateur simple à deux terminaux sur une très large bande de fréquence (100 MHz–220 GHz). / The work presented in this manuscript focuses on the design, simulation and realization of new microwave switches structures based on the integration of thin layers of innovative functional materials such as phase change materials (PCM) and phase transition materials. (PTM). The operating principle of these components is based on the change of resistivity present by these materials. We exploited the reversible resistivity change of GeTe of phase change materials family between the two states: amorphous with high resistivity and crystalline with low resistivity to realize a new structure of SPST switch. Then, we have integrated this switch structure on a new structure of DPDT (Double Port Double Throw) switch matrix based on phase change materials for application in satellite payload. We have used the insulatingmetal transition presented by the vanadium dioxide (VO2) of phase transition materials family to realize a new two terminals simple switch structure on a very wide frequency band (100 MHz–220 GHz).
8

Characterization and modeling of phase-change memories / Characterization and modeling of Phase-Change Memories

Betti Beneventi, Giovanni 14 October 2011 (has links)
La thèse de Giovanni BETTI BENEVENTI portes sur la caractérisation électrique et la modélisationphysique de dispositifs de mémoire non-volatile à changement de phase. Cette thèse a été effectuée dans le cadre d’une cotutelle avec l’Università degli Studi di Modena e Reggio Emilia (Italie).Le manuscrit en anglais comporte quatre chapitres précédés d’une introduction et terminés par uneconclusion générale.Le premier chapitre présent un résumé concernant l’état de l’art des mémoires a changement de phase. Le deuxième chapitre est consacré aux résultats de caractérisation matériau et électrique obtenus sur déposition blanket et dispositifs de mémoire à changement de phase (PCM) basées sur le nouveau matériau GeTe dopé carbone (GeTeC).Le chapitre trois s’intéresse à l’implémentation et à la caractérisation expérimentale d’un setup demesure de bruit a basse fréquence sur dispositifs électroniques a deux terminaux développé auxlaboratoires de l’Università degli Studi di Modena e Reggio Emilia en Italie.Enfin, dans le dernier chapitre est présentée une analyse rigoureuse de l’effet d’auto-chauffage Joulesur la caractéristique I-V des mémoires a changement de phase intégrant le matériau dans la phase polycristalline. / Within this Ph.D. thesis work new topics in the field of Non-Volatile Memories technologies have been investigated, with special emphasis on the study of novel materials to be integrated in Phase-Change Memory (PCM) devices, namely:(a) Investigation of new phase-change materialsWe have fabricated PCM devices integrating a novel chalcogenide material: Carbon-doped GeTe (or simply, GeTeC). We have shown that C doping leads to very good data retention performances: PCM cells integrating GeTeC10% can guarantee a 10 years fail temperature of about 127°C, compared to the 85°C of GST. Furthermore, C doping reduces also fail time dispersion. Then our analysis has pointed out the reduction of both RESET current and power for increasing carbon content. In particular, GeTeC10% PCM devices yield about a 30% of RESET current reduction in comparison to GST and GeTe ones, corresponding to about 50% of RESET energy decrease.Then, resistance window and programming time of GeTeC devices are comparable to those of GST.(b) Advanced electrical characterization techniquesWe have implemented, characterized and modeled a measurement setup for low-frequency noise characterization on two-terminal semiconductor devices.(c) Modeling for comprehension of physical phenomenaWe have studied the impact of Self-induced Joule-Heating (SJH) effect on the I-V characteristics of fcc polycrystalline-GST-based PCM cells in the memory readout region. The investigation has been carried out by means of electrical characterization and electro-thermal simulations.
9

Conception et réalisation de commutateurs RF à base de matériaux à transition de phase (PTM) et à changement de phase (PCM) / Design and realization of RF switches based on phase transition (PTM ) and phase change (PC M) materials

Mennai, Amine 11 March 2016 (has links)
Ces travaux de recherche portent sur la conception et la réalisation de commutateurs RF basées sur l’intégration de matériaux innovants fonctionnels tels que le dioxyde de vanadium (VO2) et les alliages de chalcogénures de types Ge2Sb2Te5 (GST) et GeTe. Le principe de fonctionnement de ces composants repose sur le changement de résistivité que présentent ces matériaux. Le VO2 possède une transition Isolant-Métal (MIT) autour de 68°C à travers laquelle le matériau passe d’un état isolant (forte résistivité) à un état métallique (faible résistivité). La transition MIT présente l’intérêt de pouvoir être initiée sous l’effet de plusieurs types de stimuli externes (thermique, électrique et optique) avec de faibles temps de commutation. Les alliages de types GST et GeTe ont la particularité de commuter réversiblement entre un état amorphe à forte résistivité à un état cristallin à faible résistivité suite à un traitement thermique spécifique. Les commutateurs à base de GST ou de GeTe présentent l'avantage de pouvoir opérer en mode bistable car le changement de résistivité présenté par ces matériaux est de type non volatile. Les composants réalisés ont de bonnes performances électriques (isolation et pertes d’insertion) sur une large bande. Nos travaux de recherche visent à proposer une solution alternative aux solutions classiques (semi-conducteurs et MEMS-RF) pour réaliser des commutateurs RF qui peuvent être par la suite utilisés dans la conception des dispositifs reconfigurables (filtres, Antennes). / This research work focuses on the design and realization of RF switches based on the integration of new materials such as vanadium dioxide (VO2), Ge2Sb2Te5 (GST) and GeTe chalcogenides alloys. The operating principle of these devices is based on the resistivity change presented by these materials. VO2 exhibits a Metal-Insulator transition (MIT) around 68°C for which the material changes from an insulating state (high resistivity) to a metallic one (low resistivity). The MIT transition can be triggered in different ways (thermally, electrically and optically) with low switching time. GST and GeTe alloys have the particularity to be reversibly switched between a high resistive-amorphous state to low resistive-crystalline state, under a specific heat treatment. Thanks to the non-volatile resistivity change presented by these materials, GST/GeTe-based switches are able to operate in bistable mode. The fabricated devices exhibit good electrical performances (insertion loss and isolation) over a broadband. The aim of our work is to propose an alternative solution to conventional technologies (semiconductors and RF-MEMS), to design RF switches that can be used afterward in the design of reconfigurable devices (filters, antennas).
10

Characterization and modeling of phase-change memories

Betti beneventi, Giovanni 14 October 2011 (has links) (PDF)
La thèse de Giovanni BETTI BENEVENTI portes sur la caractérisation électrique et la modélisationphysique de dispositifs de mémoire non-volatile à changement de phase. Cette thèse a été effectuée dans le cadre d'une cotutelle avec l'Università degli Studi di Modena e Reggio Emilia (Italie).Le manuscrit en anglais comporte quatre chapitres précédés d'une introduction et terminés par uneconclusion générale.Le premier chapitre présent un résumé concernant l'état de l'art des mémoires a changement de phase. Le deuxième chapitre est consacré aux résultats de caractérisation matériau et électrique obtenus sur déposition blanket et dispositifs de mémoire à changement de phase (PCM) basées sur le nouveau matériau GeTe dopé carbone (GeTeC).Le chapitre trois s'intéresse à l'implémentation et à la caractérisation expérimentale d'un setup demesure de bruit a basse fréquence sur dispositifs électroniques a deux terminaux développé auxlaboratoires de l'Università degli Studi di Modena e Reggio Emilia en Italie.Enfin, dans le dernier chapitre est présentée une analyse rigoureuse de l'effet d'auto-chauffage Joulesur la caractéristique I-V des mémoires a changement de phase intégrant le matériau dans la phase polycristalline.

Page generated in 0.0442 seconds