• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Auswertungen zum Gebäudebestand in Deutschland auf Grundlage digitaler Geobasisdaten

Behnisch, Martin, Meinel, Gotthard, Burckhardt, Manuel, Hecht, Robert January 2012 (has links)
Das Leibniz-Institut für ökologische Raumentwicklung (IÖR) verfolgt u. a. das Ziel, präzise Kenntnisse über das Mengengerüst des deutschen Gebäudebestandes und seiner Eigenschaften zu gewinnen und räumlich hochauflösende Indikatoren als Grundlage einer nachhaltigen Raumentwicklung für Planer und Entscheidungsträger zu erarbeiten. Dieser Beitrag fokussiert auf Ansätze der räumlichen Analyse, die eine Quantifizierung und Charakterisierung des Gesamtbestandes von Wohn- und Nichtwohngebäuden unterstützen. Vorgestellt werden erste Ergebnisse einer deutschlandweiten Auswertung amtlicher Hauskoordinaten und Hausumringe. Der Gebäudebestand wird nach Bundesländern und nach Raumstrukturtypen des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) gegliedert. Es besteht Bedarf, nicht nur Datenmodelle zu entwickeln, sondern daraus auch Erklärungs- und Messmodelle abzuleiten, die einen expliziten Raumbezug aufweisen und sich zur bestandsorientierten Wissensgewinnung sowie zur Strategieentwicklung eignen – auch im europäischen Kontext.
2

Automatische Erkennung von Gebäudetypen auf Grundlage von Geobasisdaten

Hecht, Robert January 2013 (has links)
Für die kleinräumige Modellierung und Analyse von Prozessen im Siedlungsraum spielen gebäudebasierte Informationen eine zentrale Rolle. In amtlichen Geodaten, Karten und Diensten des Liegenschaftskatasters und der Landesvermessung werden die Gebäude in ihrem Grundriss modelliert. Semantische Informationen zur Gebäudefunktion, der Wohnform oder dem Baualter sind in den Geobasisdaten nur selten gegeben. In diesem Beitrag wird eine Methode zur automatischen Klassifizierung von Gebäudegrundrissen vorgestellt mit dem Ziel, diese für die Ableitung kleinräumiger Informationen zur Siedlungsstruktur zu nutzen. Dabei kommen Methoden der Mustererkennung und des maschinellen Lernens zum Einsatz. Im Kern werden Gebäudetypologie, Eingangsdaten, Merkmalsgewinnung sowie verschiedene Klassifikationsverfahren hinsichtlich ihrer Genauigkeit und Generalisierungsfähigkeit untersucht. Der Ensemble-basierte Random-Forest-Algorithmus zeigt im Vergleich zu 15 weiteren Lernverfahren die höchste Generalisierungsfähigkeit und Effizienz und wurde als bester Klassifikator zur Lösung der Aufgabenstellung identifiziert. Für Gebäudegrundrisse im Vektormodell, speziell den Gebäuden aus der ALK, dem ALKIS® oder dem ATKIS® Basis-DLM sowie den amtlichen Hausumringen und 3D-Gebäudemodellen, kann mit dem Klassifikator für alle städtischen Gebiete eine Klassifikationsgenauigkeit zwischen 90 % und 95 % erreicht werden. Die Genauigkeit bei Nutzung von Gebäudegrundrissen extrahiert aus digitalen topographischen Rasterkarten ist mit 76 % bis 88 % deutlich geringer. Die automatische Klassifizierung von Gebäudegrundrissen leistet einen wichtigen Beitrag zur Gewinnung von Informationen für die kleinräumige Beschreibung der Siedlungsstruktur. Neben der Relevanz in den Forschungs- und Anwendungsfeldern der Stadtgeographie und Stadtplanung sind die Ergebnisse auch für die kartographischen Arbeitsfelder der Kartengeneralisierung, der automatisierten Kartenerstellung sowie verschiedenen Arbeitsfeldern der Geovisualisierung relevant.

Page generated in 0.0586 seconds