• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação da cinética de polimerização no processo gelcasting aplicado a emulsões cerâmicas/

Salama, M. C. January 2017 (has links)
Dissertação (Mestrado em Engenharia Mecânica) - Centro Universitário FEI, São Bernardo do Campo, 2017.
2

Avaliação microestrutural e do comportamento termomecânico do aço inoxidável HK-30 conformado por gelcasting/

Oliveira, L. F. R. January 2015 (has links) (PDF)
Dissertação (Mestrado em Engenharia Mecânica) - Centro Universitário da FEI, São Bernardo do Campo, 2015
3

Biocerâmicas porosas de alumina e de alumina-zircônia recobertas com fosfatos de cálcio para implantes ósseos / Alumina and alumina-zirconia porous bioceramics coated with calcium phosphates for bone implants

Sartori, Thauane Aparecida Inácio da Costa 16 July 2015 (has links)
A utilização de biocerâmicas de natureza inerte, como a alumia e zircônia, têm ao longo dos últimos anos, estimulado grande interesse científico no entendimento dos mecanismos biológicos dos biomateriais. Por sua vez, cerâmicas bioativas (a base de fosfatos de cálcio) apresentam uma melhor estabilidade química superficial e biocompatibilidade, entretanto, suas limitações estão relacionadas a baixos valores de propriedades mecânicas. Assim, a técnica de recobrimento de alumina-zircônia, em soluções de concentrações semelhantes ao fluido corpóreo, possibilita o desenvolvimento de uma camada bioativa, que induz uma melhor interação osso-implante. Além disso, cerâmicas porosas (arcabouços) com morfologia e distribuição bem definida são reconhecidamente empregadas como suporte para o crescimento, fixação e desenvolvimento de tecido no interior do implante. Neste sentido, o objetivo deste trabalho foi obter corpos de prova porosos de alumina e alumina contendo 5% em volume de inclusões nanométricas de zircônia. A obtenção dos corpos porosos se baseou no processo gelcasting de espumas, sem atmosfera controlada, seguido pelo tratamento químico de superfície com ácido fosfórico e finalmente, pelo recobrimento biomimético para o período de 7, 14 e 21 dias de incubação. As caracterizações dos corpos de prova foram realizadas através de porosidade aparente, microscopia eletrônica de varredura (MEV) aliada à espectroscopia por dispersão de energia (EDS) e ensaio de compressão diametral. Os resultados indicaram a obtenção de corpos porosos de alumina e alumina-zircônia com alta homogeneidade de poros em toda a estrutura com elevada interconectividade. O método de recobrimento biomimético promoveu uma formação efetiva de apatita na superfície e no interior dos poros dos corpos porosos em todas as composições e condições estudadas, contudo, essa formação se apresentou mais uniformemente distribuída na superfície dos nanocompósitos porosos de alumina-zircônia tratados com ácido fosfórico, indicando que a presença da zircônia nanométrica estimula a formação da nucleação da apatita a partir das interações entre os grupos (Zr-OH). Além disso, bons valores de resistência mecânica à compressão da matriz foram alcançados, potencializando a aplicação dos corpos porosos de alumina e de alumina-zircônia recobertos com fosfato de cálcio como bons substitutos ósseos. / The use of naturally inert bioceramics as alumina and zirconia has over the last few years spurred great scientific interest in understanding the biological mechanisms of biomaterials. In turn, ceramic biactive (by calcium phosphate), have a better surface biocompatibility and chemical stability. However, their limitations are related to low values of mechanical properties. Thus, the alumina-zirconia coating technique, in similar concentrations to the body fluid solutions, enables the development of a bioactive layer, which induces a better implantbone interaction. Furthermore, porous ceramic (scaffolds) with a defined morphology and distribution are known by using it as support for the growth, attachment and tissue development within the implant. In this sense, the objective of this study was to obtain porous bodies of alumina and alumina containing 5%vol. nanometric zirconia inclusions. The obtaining of porous bodies based on the gelcasting foams process without controlled atmosphere, followed by chemical surface treatment with phosphoric acid, and finally the biomimetic coating to the period of 7, 14 and 21 days of incubation. The characterizations of the samples were performed by apparent porosity, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and diametrical compression test. The results indicated porous bodies of alumina and alumina-zirconia with high homogeneity throughout the pore structure with high interconnectivity. The biomimetic coating method promoted effective formation of apatite on the surface and within the pores of the porous bodies in all investigated compositions and conditions, however, such a formation is presented more evenly distributed on the surface of porous alumina-zirconia nanocomposite acid-treated phosphoric, indicating that the presence of nano-zirconia stimulates the formation of nucleation of apatite from interactions between groups (Zr-OH). Furthermore, good values of compressive strength of the matrix that have been achieved, enhancing the application of the porous bodies of alumina and alumina-zirconia coated with calcium phosphate bone substitutes as well.
4

Biocerâmicas porosas de alumina e de alumina-zircônia recobertas com fosfatos de cálcio para implantes ósseos / Alumina and alumina-zirconia porous bioceramics coated with calcium phosphates for bone implants

Thauane Aparecida Inácio da Costa Sartori 16 July 2015 (has links)
A utilização de biocerâmicas de natureza inerte, como a alumia e zircônia, têm ao longo dos últimos anos, estimulado grande interesse científico no entendimento dos mecanismos biológicos dos biomateriais. Por sua vez, cerâmicas bioativas (a base de fosfatos de cálcio) apresentam uma melhor estabilidade química superficial e biocompatibilidade, entretanto, suas limitações estão relacionadas a baixos valores de propriedades mecânicas. Assim, a técnica de recobrimento de alumina-zircônia, em soluções de concentrações semelhantes ao fluido corpóreo, possibilita o desenvolvimento de uma camada bioativa, que induz uma melhor interação osso-implante. Além disso, cerâmicas porosas (arcabouços) com morfologia e distribuição bem definida são reconhecidamente empregadas como suporte para o crescimento, fixação e desenvolvimento de tecido no interior do implante. Neste sentido, o objetivo deste trabalho foi obter corpos de prova porosos de alumina e alumina contendo 5% em volume de inclusões nanométricas de zircônia. A obtenção dos corpos porosos se baseou no processo gelcasting de espumas, sem atmosfera controlada, seguido pelo tratamento químico de superfície com ácido fosfórico e finalmente, pelo recobrimento biomimético para o período de 7, 14 e 21 dias de incubação. As caracterizações dos corpos de prova foram realizadas através de porosidade aparente, microscopia eletrônica de varredura (MEV) aliada à espectroscopia por dispersão de energia (EDS) e ensaio de compressão diametral. Os resultados indicaram a obtenção de corpos porosos de alumina e alumina-zircônia com alta homogeneidade de poros em toda a estrutura com elevada interconectividade. O método de recobrimento biomimético promoveu uma formação efetiva de apatita na superfície e no interior dos poros dos corpos porosos em todas as composições e condições estudadas, contudo, essa formação se apresentou mais uniformemente distribuída na superfície dos nanocompósitos porosos de alumina-zircônia tratados com ácido fosfórico, indicando que a presença da zircônia nanométrica estimula a formação da nucleação da apatita a partir das interações entre os grupos (Zr-OH). Além disso, bons valores de resistência mecânica à compressão da matriz foram alcançados, potencializando a aplicação dos corpos porosos de alumina e de alumina-zircônia recobertos com fosfato de cálcio como bons substitutos ósseos. / The use of naturally inert bioceramics as alumina and zirconia has over the last few years spurred great scientific interest in understanding the biological mechanisms of biomaterials. In turn, ceramic biactive (by calcium phosphate), have a better surface biocompatibility and chemical stability. However, their limitations are related to low values of mechanical properties. Thus, the alumina-zirconia coating technique, in similar concentrations to the body fluid solutions, enables the development of a bioactive layer, which induces a better implantbone interaction. Furthermore, porous ceramic (scaffolds) with a defined morphology and distribution are known by using it as support for the growth, attachment and tissue development within the implant. In this sense, the objective of this study was to obtain porous bodies of alumina and alumina containing 5%vol. nanometric zirconia inclusions. The obtaining of porous bodies based on the gelcasting foams process without controlled atmosphere, followed by chemical surface treatment with phosphoric acid, and finally the biomimetic coating to the period of 7, 14 and 21 days of incubation. The characterizations of the samples were performed by apparent porosity, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and diametrical compression test. The results indicated porous bodies of alumina and alumina-zirconia with high homogeneity throughout the pore structure with high interconnectivity. The biomimetic coating method promoted effective formation of apatite on the surface and within the pores of the porous bodies in all investigated compositions and conditions, however, such a formation is presented more evenly distributed on the surface of porous alumina-zirconia nanocomposite acid-treated phosphoric, indicating that the presence of nano-zirconia stimulates the formation of nucleation of apatite from interactions between groups (Zr-OH). Furthermore, good values of compressive strength of the matrix that have been achieved, enhancing the application of the porous bodies of alumina and alumina-zirconia coated with calcium phosphate bone substitutes as well.
5

New approaches for steel melt filtration in continuous casting of steel

Wetzig, Tony 28 March 2022 (has links)
Ziel der Arbeit war es die Modelle des Sonderforschungsbereiches (SFB) 920 zur Filtration von Stahlschmelzen erstmals im industriellen Maßstab zu überprüfen. Dafür wurden zwei Arten großformatiger Filter entwickelt: 1. Schaumfilter mit Zylindergeometrie mittels einer modifizierter Replikaroute und 2. “Spaghettifilter” mittels robotergestützten Gelcastings auf Alginatbasis. Die mechanischen und strukturellen Eigenschaften der Filtermaterialien wurden in Abhängigkeit verschiedener Herstellungsparameter untersucht und die Einsatzfähigkeit geeigneter Filterprototypen wurde im Stahlgusssimulator des SFB 920 evaluiert. Die finalen Filterbauteile wurden im Stranggießverteiler des Industriepartners thyssenkrupp Steel Europe AG für circa 45 Minuten bei >1550 °C in die Stahlschmelze eingetaucht. Schaumfilter mit der richtigen Einsatzkonfiguration überstanden die Prozessbedingungen trotz Thermoschock und Schlackekontakt. Post-mortem-Untersuchungen der Filteroberfläche zeigten klare Anzeichen für reaktive und aktive Filterwirkung wie sie aus Laborversuchen bekannt sind. Die Industrietests zeigten somit den ersten Machbarkeitsnachweis für das neuartige Filterkonzept.
6

Obtenção e caracterização de hidroxiapatita porosa pelo método gelcasting de espumas para uso como implantes

Volkmer, Tiago Moreno January 2006 (has links)
Biocerâmicas porosas são utilizadas para que se forneça local para o tecido ósseo crescer e fixar o implante biologicamente. Foi utilizada hidroxiapatita (HA), que é uma cerâmica bioativa e permite o crescimento de tecido ósseo e revascularização da área de implante pela ligação química estabelecida entre a fase mineral dos ossos com a hidroxiapatita sintética. Este estudo teve como objetivo a obtenção de blocos porosos de hidroxiapatita através do método gelcasting de espumas, utilizando matérias-primas nacionais e sem o uso de atmosfera controlada. A hidroxiapatita utilizada nesse trabalho foi obtida com um método inovador com a utilização de defloculantes. O método gelcasting de espumas consiste na incorporação de uma fase gasosa dispersa dentro de uma suspensão cerâmica contendo o pó cerâmico, água, defloculantes, ligantes e agentes de gelificação. Após a formação de espuma o gel é formado pela polimerização in situ de monômeros orgânicos e o controle do tempo de indução é primordial para a obtenção de porosidade controlada. Foram estudados os efeitos da quantidade de surfactante, do teor de sólidos e do tempo de indução na microestrutura e nas propriedades físicas da hidroxiapatita. Avaliou-se o volume de espuma formado, a viscosidade das suspensões, a resistência mecânica à compressão, a superfície de fratura, a densidade e porosidade, fases cristalinas e grupos químicos, assim como a permeabilidade das peças porosas. Foram realizados ensaios in vitro e in vivo para verificar o comportamento do material quando implantado. Obteve-se porosidade máxima de cerca de 87,5% para o teor de 60% de sólidos. Foram obtidos blocos porosos de hidroxiapatita pelo método gelcasting com tamanho de poros controlado, potencialmente aptos para uso em medicina e odontologia como implantes ósseos reparadores de defeitos ósseos em locais onde a solicitação mecânica seja baixa. / Porous bioceramics are used as a place where bone tissue can grow and fix implants biologically. In this work, hydroxyapatite (HA) was used. It is a bioactive ceramic which allows the growth of bone tissue and revascularization of implant area by the formation of a chemical bond between bones mineral phase and synthetic hydroxyapatite. The aim of this work is to obtain hydroxyapatite porous blocks through the gelcasting foams method, using national’s raw materials and without the atmosphere control. The HA used in this work was obtained by a new method which consists in the addiction of a defloculant. The gelcasting foams method consists in the incorporation of gaseous phase in a ceramic suspension containing the ceramic material, water, defloculants, binders and gelling agents. After the foam formation, the material turns in to a gel by the in situ polymerization of the organic monomers. The control of the induction time is very important to control the porosity. The effect of surfactant amounts, of the solids content and of the induction time in the hydroxyapatite microstructure and physical properties was studied. Also there was evaluated the in vitro and in vivo comportment of the produced porous hydroxyapatite foams. The amount of foam produced, the viscosity of suspensions, compression mechanical strength, fracture surface, apparent density, porosity, permeability, crystalline phases and chemical groups were evaluated. A maximal porosity of about 87.5% was obtained for a solids content of 60%. Obtained materials have a potential use as bone implants in both medical and odontological applications as bone defects repairers in places where low mechanical strengths were required.
7

Obtenção e caracterização de hidroxiapatita porosa pelo método gelcasting de espumas para uso como implantes

Volkmer, Tiago Moreno January 2006 (has links)
Biocerâmicas porosas são utilizadas para que se forneça local para o tecido ósseo crescer e fixar o implante biologicamente. Foi utilizada hidroxiapatita (HA), que é uma cerâmica bioativa e permite o crescimento de tecido ósseo e revascularização da área de implante pela ligação química estabelecida entre a fase mineral dos ossos com a hidroxiapatita sintética. Este estudo teve como objetivo a obtenção de blocos porosos de hidroxiapatita através do método gelcasting de espumas, utilizando matérias-primas nacionais e sem o uso de atmosfera controlada. A hidroxiapatita utilizada nesse trabalho foi obtida com um método inovador com a utilização de defloculantes. O método gelcasting de espumas consiste na incorporação de uma fase gasosa dispersa dentro de uma suspensão cerâmica contendo o pó cerâmico, água, defloculantes, ligantes e agentes de gelificação. Após a formação de espuma o gel é formado pela polimerização in situ de monômeros orgânicos e o controle do tempo de indução é primordial para a obtenção de porosidade controlada. Foram estudados os efeitos da quantidade de surfactante, do teor de sólidos e do tempo de indução na microestrutura e nas propriedades físicas da hidroxiapatita. Avaliou-se o volume de espuma formado, a viscosidade das suspensões, a resistência mecânica à compressão, a superfície de fratura, a densidade e porosidade, fases cristalinas e grupos químicos, assim como a permeabilidade das peças porosas. Foram realizados ensaios in vitro e in vivo para verificar o comportamento do material quando implantado. Obteve-se porosidade máxima de cerca de 87,5% para o teor de 60% de sólidos. Foram obtidos blocos porosos de hidroxiapatita pelo método gelcasting com tamanho de poros controlado, potencialmente aptos para uso em medicina e odontologia como implantes ósseos reparadores de defeitos ósseos em locais onde a solicitação mecânica seja baixa. / Porous bioceramics are used as a place where bone tissue can grow and fix implants biologically. In this work, hydroxyapatite (HA) was used. It is a bioactive ceramic which allows the growth of bone tissue and revascularization of implant area by the formation of a chemical bond between bones mineral phase and synthetic hydroxyapatite. The aim of this work is to obtain hydroxyapatite porous blocks through the gelcasting foams method, using national’s raw materials and without the atmosphere control. The HA used in this work was obtained by a new method which consists in the addiction of a defloculant. The gelcasting foams method consists in the incorporation of gaseous phase in a ceramic suspension containing the ceramic material, water, defloculants, binders and gelling agents. After the foam formation, the material turns in to a gel by the in situ polymerization of the organic monomers. The control of the induction time is very important to control the porosity. The effect of surfactant amounts, of the solids content and of the induction time in the hydroxyapatite microstructure and physical properties was studied. Also there was evaluated the in vitro and in vivo comportment of the produced porous hydroxyapatite foams. The amount of foam produced, the viscosity of suspensions, compression mechanical strength, fracture surface, apparent density, porosity, permeability, crystalline phases and chemical groups were evaluated. A maximal porosity of about 87.5% was obtained for a solids content of 60%. Obtained materials have a potential use as bone implants in both medical and odontological applications as bone defects repairers in places where low mechanical strengths were required.
8

Obtenção e caracterização de hidroxiapatita porosa pelo método gelcasting de espumas para uso como implantes

Volkmer, Tiago Moreno January 2006 (has links)
Biocerâmicas porosas são utilizadas para que se forneça local para o tecido ósseo crescer e fixar o implante biologicamente. Foi utilizada hidroxiapatita (HA), que é uma cerâmica bioativa e permite o crescimento de tecido ósseo e revascularização da área de implante pela ligação química estabelecida entre a fase mineral dos ossos com a hidroxiapatita sintética. Este estudo teve como objetivo a obtenção de blocos porosos de hidroxiapatita através do método gelcasting de espumas, utilizando matérias-primas nacionais e sem o uso de atmosfera controlada. A hidroxiapatita utilizada nesse trabalho foi obtida com um método inovador com a utilização de defloculantes. O método gelcasting de espumas consiste na incorporação de uma fase gasosa dispersa dentro de uma suspensão cerâmica contendo o pó cerâmico, água, defloculantes, ligantes e agentes de gelificação. Após a formação de espuma o gel é formado pela polimerização in situ de monômeros orgânicos e o controle do tempo de indução é primordial para a obtenção de porosidade controlada. Foram estudados os efeitos da quantidade de surfactante, do teor de sólidos e do tempo de indução na microestrutura e nas propriedades físicas da hidroxiapatita. Avaliou-se o volume de espuma formado, a viscosidade das suspensões, a resistência mecânica à compressão, a superfície de fratura, a densidade e porosidade, fases cristalinas e grupos químicos, assim como a permeabilidade das peças porosas. Foram realizados ensaios in vitro e in vivo para verificar o comportamento do material quando implantado. Obteve-se porosidade máxima de cerca de 87,5% para o teor de 60% de sólidos. Foram obtidos blocos porosos de hidroxiapatita pelo método gelcasting com tamanho de poros controlado, potencialmente aptos para uso em medicina e odontologia como implantes ósseos reparadores de defeitos ósseos em locais onde a solicitação mecânica seja baixa. / Porous bioceramics are used as a place where bone tissue can grow and fix implants biologically. In this work, hydroxyapatite (HA) was used. It is a bioactive ceramic which allows the growth of bone tissue and revascularization of implant area by the formation of a chemical bond between bones mineral phase and synthetic hydroxyapatite. The aim of this work is to obtain hydroxyapatite porous blocks through the gelcasting foams method, using national’s raw materials and without the atmosphere control. The HA used in this work was obtained by a new method which consists in the addiction of a defloculant. The gelcasting foams method consists in the incorporation of gaseous phase in a ceramic suspension containing the ceramic material, water, defloculants, binders and gelling agents. After the foam formation, the material turns in to a gel by the in situ polymerization of the organic monomers. The control of the induction time is very important to control the porosity. The effect of surfactant amounts, of the solids content and of the induction time in the hydroxyapatite microstructure and physical properties was studied. Also there was evaluated the in vitro and in vivo comportment of the produced porous hydroxyapatite foams. The amount of foam produced, the viscosity of suspensions, compression mechanical strength, fracture surface, apparent density, porosity, permeability, crystalline phases and chemical groups were evaluated. A maximal porosity of about 87.5% was obtained for a solids content of 60%. Obtained materials have a potential use as bone implants in both medical and odontological applications as bone defects repairers in places where low mechanical strengths were required.
9

Near-Net Shaping and Additive Manufacturing of Ultra-High Temperature Ceramics via Colloidal Processing

Goyer, Julia Noel 22 September 2023 (has links)
Ceramic colloidal processing routes such as slip casting, gelcasting and direct ink writing provide valuable insight into the role of interaction forces between particles, solvents, and polymeric additives in the rheology, particle packing, and strength of a ceramic green body. For difficult-to-densify ceramics such as the UHTCs, which find their place in extreme environment applications, precise control of each step of the manufacturing process is key. In this work, a fundamental study on the interaction between particles in non-aqueous slip casting is performed comparing the rheological behavior and consolidation with current models for interaction potential within a suspension. The advantages and drawbacks of such a model are discussed in relation to formulating a colloidal process for advanced ceramics such as ZrB2, and a case for a cyclohexane slip casting system resulting in low viscosity, shear-thinning behavior and green density of 64%, is made. The focus on non-aqueous colloidal processing is extended to gelcasting, involving three different sets of chemically curable polymer systems: HEMA+MBAM, TMPTA, and PEGDA. Merits of the gelcasting process including homogeneity, green strength, and processing time reduction are discussed, with the HEMA+MBAM system resulting in nearly an order of magnitude increase in green density from slip casting. Gelcast samples were also sintered to a density of 88% and capable of being processed in a variety of complex shapes with fine feature size on the mm scale. The properties examined in slip casting and gelcasting, as well as others pertaining to the setup of an extrusion-based additive manufacturing system, are carefully considered to design an ink that has been used to print ZrB2. The role of each additive as well as the solvent in creating an ink that is not only within the correct viscosity range for extrusion and shape retention, but also produces a strong and densely packed green body, is discussed. Finally, adjustment of printing parameters, and the method of using a low-cost rheology match to tune the settings of a pneumatic screw-extrusion printing setup, are explained. Each of these processes points to new and practical methods of complex shaping ZrB2 that can provide insight into processing of these challenging materials and create new avenues for their use in extreme environment applications, such as thermal protection systems in atmospheric re-entry vehicles. / Doctor of Philosophy / This work examines the use of ultra-high temperature ceramics (UHTCs), which are materials with some of the highest melting points in existence. These are an intriguing option for extreme environment applications. One such application is the protection of rockets, scramjets, and other hypersonic (speed > Mach 5) vehicles from the high temperatures experienced during flight and re-entry. In this work, the UHTC Zirconium diboride (ZrB2) is used as a reference material. For many of the same reasons UHTCs such as ZrB2 have extreme melting points, they can be difficult to manufacture, particularly in complex shapes. Like many ceramics, UHTCs are not melted and cast as metals are, but rather are processed in powder form to a compact known as a green body. The green body is placed in a high-temperature furnace at 2/3 - 3/4 of the melting point, where the powder undergoes sintering, or consolidation into a dense part. The manufacture of a green body that is versatile in its capacity to be molded into any shape, and allows for close packing of the particles in the powder compact to avoid failure-inducing flaws in the final component under intense loads, remains a challenge for UHTCs. Most UHTCs are hot pressed, where the powder alone is consolidated under intense heat and pressure, but this process offers very little complex shaping capacity or control of the uniformity of the part. In this work, three methods for green body manufacture using colloid-based routes, which all have unique capabilities and challenges, are described. The first process is slip casting, which is a centuries-old process that has been used for the manufacture of pottery, whitewares, and art ceramics. When used effectively, slip casting ensures that the forces between ceramic particles in a suspension, or "slip", are well-controlled such that the ceramic particles will not form clumps, or agglomerates, which create non-uniformities that weaken the final component. With information about the powder, solvent, and additives in a slip, the extent to which this will be effective can be predicted with mathematical models. This work compares the results of these models with slip casting suspensions in different solvent environments to gain knowledge about slip casting as an option for complex shaping of ZrB2. The second colloidal process discussed is gelcasting, in which the suspension of ceramic powder can undergo chemical gelation, or a reaction that transitions the suspension from a liquid to a solid, not unlike that of a natural gel such as gelatin, agarose, or albumin (egg white). The gel, which is loaded with ceramic powder, allows for more versatile shaping than slip casting, and shorter processing time; a gelcast ceramic is generally solidified in less than an hour, while a slip cast typically dries overnight. The presence the gel also provides strength to the green body, which is advantageous in handling as well as any machining to adjust the shape that may be necessary prior to sintering. The final process detailed in this work is direct ink writing, a type of additive manufacturing (or 3D printing). Knowledge gained from slip casting and gelcasting was used to carefully design a ceramic colloid that could be deposited in a layer-by-layer fashion to create a complex shape with high uniformity and control, as well as minimal surface cracking. The printed green bodies were compared in strength and sintering behavior to the gelcasts from previous chapters, and the expansion of shaping capacity for each route as it relates to aerospace applications, is described.
10

Cerâmicas nanoporosas com estrutura hierarquizada para aplicação em altas temperaturas

Brandi, Jamile January 2011 (has links)
Orientador: Rafael Salomão / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2011.

Page generated in 0.0786 seconds