• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 69
  • 27
  • 9
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 386
  • 386
  • 177
  • 91
  • 80
  • 77
  • 76
  • 72
  • 68
  • 66
  • 62
  • 61
  • 55
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Application of Methods from Numerical Relativity to Late-Universe Cosmology

Mertens, James B. 08 February 2017 (has links)
No description available.
62

Boundary conditions for black holes using the Ashtekar isolated and dynamical horizons formalism

Schirmer, Jerry Michael 02 February 2011 (has links)
Isolated and Dynamical horizons are used to generate boundary conditions upon the lapse and shift vectors. Numerous results involving the Hamiltonian of General relativity are derived, including a self-contained derivation of the Hamiltonian equations of general relativity using both a direct 'brute force' method of directly computing Lie derivatives, as well as the standard Hamil- tonian approach. Conclusions are compared to numerous examples, including the Kerr, Schwarzschild-De Sitter, McVittie, and Vaiyda spacetimes. / text
63

Dirac solitons in general relativity and conformal gravity

Dorkenoo Leggat, Alasdair January 2017 (has links)
Static, spherically-symmetric particle-like solutions to the coupled Einstein-Dirac and Einstein-Dirac-Maxwell equations have been studied by Finster, Smoller and Yau (FSY). In their work, FSY left the fermion mass as a parameter set to ±1. This thesis generalises these equations to include the Higgs field, letting the fermion mass become a function through coupling, μ. We discuss the dynamics associated with the Higgs field and find that there exist qualitatively similar solutions to those found by FSY, with well behaved, non-divergent metric components and electrostatic potential, close to the origin, going over to the point-particle solutions for large r; the Schwarzschild or Reissner-Nordström metric, and the Coulomb potential. We then go on to discuss an alternative gravity theory, conformal gravity, (CG), and look for solutions of the CG equations of motion coupled to the Dirac, Higgs and Maxwell equations. We obtain asymptotically nonvanishing, yet fully normalisable Dirac spinor components, resembling those of FSY, and, in the case where charge is included, non-divergent electrostatic potential close to the origin, matching onto the Coulomb potential for large r.
64

Hawking Radiation and the Information Paradox

Gray, Sean January 2016 (has links)
This report presents a selfcontained derivation of Hawking radiation, and discusses the consequent information loss paradox.
65

Cosmological tests of general relativity

Baker, Theresa Mary January 2013 (has links)
Understanding the apparent accelerating expansion rate of the universe is a challenge for modern cosmology. One category of explanations is that we are using the wrong gravitational physics to study the observations. Our paradigmatic theory of gravity – Einstein’s theory of General Relativity – may be subsumed by a larger theory. This thesis develops a selection of tools for testing General Relativity and the numerous alternative theories of gravity that have been put forward. I advocate that an elegant and efficient way to test this space of theories is through the use of parameterized frameworks. Inspired by the Parameterized Post-Newtonian framework I develop a new formalism, the Parameterized Post-Friedmann formalism, that aims to unify the linear cosmological perturbation theory of many alternatives to General Relativity. Having introduced the Parameterized Post-Friedmann formalism and demonstrated its application via a suite of examples, I examine several issues surrounding parameterized tests of gravity. I first consider how the structure of a parameterization can influence the constraints obtainable from a given set of data. I then consider how to describe the growth of the large-scale structure of the universe in a parameterized manner. This leads to a convenient tool for calculating corrections to the growth rate of structure in modified theories, which can be used both with the Parameterized Post-Friedmann formalism or independently of it. I present forecasts for how well generalized deviations from General Relativity will be constrained by the next generation of galaxy surveys. Throughout, this thesis aims to take a synoptic approach to theories of modified gravity, rather than focussing on specific models. A question yet to be answered is whether this approach is realistic in practical terms. The final part of this thesis takes the first steps towards an answer.
66

Stellar Models in General Relativity

Samuelsson, Lars January 2003 (has links)
<p>Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 10<sup>12 </sup>Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition <i>R</i> < 3<i>M</i> is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed</p>
67

A Perturbation-inspired Method of Generating Exact Solutions in General Relativity

Wilson, Brian James 13 April 2010 (has links)
General relativity has a small number of known, exact solutions which model astronomically relevant systems. These models are highly idealized situations. Either perturbation theory or numerical simulations are typically needed to produce more realistic models. Numerical simulations are time-consuming and suffer from a difficulty in interpreting the results. In addition, global properties of numerical solutions are nearly impossible to uncover. On the other hand, standard perturbation methods are very difficult to implement beyond the second order, which means they barely scratch the surface of non-linear phenomena which distinguishes general relativity from Newtonian gravity. This work develops a method of finding exact solutions, inspired by perturbation theory, which have energy-momentum tensor components that approximately satisfy desired relationships. We find a spherical lump of matter which has a density profile $\mu \propto r^{-2}$ in a Robertson-Walker background; it looks like a galaxy in an expanding universe. We also find a plane-symmetric perturbation of a Bianchi type I metric with a density profile $\mu \propto z^{-2}$; it models a jet impacting a sheet-like structure. The former solution involves a wormhole while the latter involves a two dimensional singularity. These are both non-linear structures which perturbation theory can never produce.
68

Možnosti elementárního výkladu obecné teorie relativity / Possibilities of teaching/learning general relativity at elementary level

Ryston, Matěj January 2014 (has links)
This thesis deals with an elementary introduction to general relativity on a level understandable by secondary school students and graduates. It contains a review of available literature including its approach to the introductory level of relativity, a study text covering the necessary parts of classical mechanics, special relativity and subsequently basic ideas and conclusions of general relativity. A didactical analysis of the study text is also part of the thesis. The text presumes only basic knowledge of secondary school physics (mostly mechanics), therefore it is suitable for a wide range of readers amongst secondary school students and graduates. It can also be useful as a study material for secondary school teachers, who wish to enrich their teaching with more modern chapters of physics.
69

A complementaridade dos pensamentos narrativo e matemático na gestação da teoria da relatividade geral. / The Complementarity of Narrative and Mathematical Thoughts in Theory of General Relativity Gestation.

Luiz, Danilo Cardoso Rodrigues 14 July 2015 (has links)
Este trabalho parte do pressuposto de que investigar as linguagens e pensamentos envolvidos nos processos de criação científica, no processo de interpretação do cientista frente aos fenômenos da natureza, pode nos indicar como trabalhar a ciência em sala de aula de maneira que as características epistemológicas deste conhecimento sejam levadas em consideração. Com isto, este trabalho toma uma perspectiva epistemológica. Quando pensamos no ensino básico, em particular, temos a indicação de que uma das dificuldades enfrentadas pelos alunos está relacionada à formalização do conhecimento científico. Isto é ainda mais forte na física, uma vez que este conhecimento tem uma relação muito próxima com a matemática. Mas qual é o papel epistemológico da matemática para a física? O cientista é capaz de interpretar fisicamente a natureza somente usando linguagens e pensamentos formais, especialmente estruturados pela matemática? Nossa hipótese é que a resposta a essa questão é negativa. Encontramos nas ideias do psicólogo Jerome Bruner uma forma de encaminhar nossa discussão. A partir das ideias dele, e do nosso anseio por investigar se pensamentos e linguagens que não são estritamente formais desempenham papel importante na construção da física, levantamos a seguinte questão: Qual o papel das narrativas e da matemática na construção da física? Para delinear uma resposta possível a esta questão, tomamos como contexto da nossa pesquisa alguns \"capítulos\" da construção da Teoria da Relatividade Geral. Nossa investigação mostrou que experimentos mentais importantes no desenvolvimento desta teoria foram construídos a partir dos pensamentos narrativo e matemático. Entendemos que estes dois modos de pensamentos se apresentaram de maneira complementar no contexto estudado. / This work assumes that investigate the language and thoughts involved in scientific processes of creating, in the scientist process of interpretation facing the nature phenomena, can reveal how to work the science in the classroom so that the epistemological features of this knowledge are taken into account. Taking this into account, our work takes an epistemological perspective. When we think in high school, in particular, we have the indication that one of the difficulties faced by students is related to the formalization of scientific knowledge. This is even stronger in physics, which mathematics plays important role. But what is the epistemological role of mathematics to physics? The scientist is able to physically interpret nature only using formal languages and thoughts, especially structured by mathematics? Our hypothesis is that the answer to this question is negative. We find the psychologist Jerome Bruner ideas a way to send our discussion. From his ideas, and our longing to investigate whether thoughts and languages that are not strictly formal play an important role in building physics, raised the question: What is the role of narrative and mathematics in physical construction? To outline a possible answer to this question, we take as the context of our research some \"chapters\" of the construction of the General Theory of Relativity. Our investigation has shown that important thought experiments in the development of this theory were built from the narrative and mathematical thoughts. We understand that these two modes of thought presented in a complementary manner in the context studied.
70

Perturbações de sistemas gravitacionais: a métrica de vaidya, mini buracos negros e gravastares / Perturbations of Gravitational Systems: the Vaidya Metric, Mini Black Holes and Gravastars

Chirenti, Cecilia Bertoni Martha Hadler 02 July 2007 (has links)
Estudos de perturbações em sistemas gravitacionais no âmbito da Relatividade Geral vêm sofrendo grandes desenvolvimentos nos últimos anos, especialmente em face da evolução dos modernos detectores de ondas gravitacionais. Abordamos neste trabalho as perturbações de diferentes cenários. Principiamos com a métrica de Vaidya, utilizada para descrever espaços-tempos esfericamente simétricos e dependentes do tempo. Nossas simulações mostraram que as freqüências dos modos quasi-normais (MQN\'s) apresentam um novo efeito inercial para variações rápidas da função de massa, retornando depois ao comportamento adiabático. Em seguida, apresentamos um modelo para a evaporação de mini buracos negros por radiação de Hawking inspirado no cenário de criação destes objetos em aceleradores de partículas, previsto pelas novas teorias com dimensões extras. Nosso modelo, baseado na métrica de Vaidya n-dimensional, tornou possível a análise de MQN\'s resultando na possibilidade de se obter os parâmetros relevantes do buraco negro, como a sua massa inicial e o número de dimensões extras, a partir de medições experimentais. Finalmente, realizamos um estudo sobre uma nova solução denominada gravastar, proposta como um modelo alternativo para o estágio final de estrelas com grande massa. Obtivemos limites para os parâmetros da solução e verificamos a sua estabilidade frente a perturbações axiais, concluindo positivamente a respeito da possibilidade de se distinguir entre buracos negros e gravastares com base no seu espectro de MQN\'s. / Perturbative studies of gravitational systems in General Relativity have gone through big developments in the last years, especially due to the evolution of the modern gravitational wave detectors. We consider in this work different perturbations in different scenarios. Firstly we consider the Vaidya metric, mainly used to describe time-dependent spherically symmetric spacetimes. Our simulations show that the frequencies of the quasinormal modes (QNM\'s) present a new inertial effect for rapidly varying mass functions, returning afterwards to the adiabatic behavior. Next we present a model for evaporating mini black holes in particle accelerators, in the context of the new gravity models with extra dimensions. With our model, based on the n-dimensional Vaidya metric, we are able to perform a QNM analysis which results in the possibility of obtaining the parameters of the black hole, such as its initial mass and the number of extra dimensions, from the experimental measurements. Finally, we present a study of a new solution, the gravastar, proposed as an alternative model for the end state of massive stars. We obtain bounds for the parameters of the solution and verify its stability against axial perturbations. Our results indicate that the gravastar\'s QNM spectrum can indeed be used to distinguish a black hole from a gravastar.

Page generated in 0.0863 seconds