• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 99
  • 99
  • 99
  • 25
  • 24
  • 21
  • 21
  • 20
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A numerical treatment of spin-1/2 fields coupled to gravity

Ventrella, Jason Firmin, Choptuik, Matthew William, Morrison, Philip J. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Supervisors: Matthew William Choptuik and Philip J. Morrison. Vita. Includes bibliographical references. Available also from UMI Company.
32

Gravitational radiation damping and the three-body problem

Wardell, Zachary, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 62-63). Also available on the Internet.
33

Gravitational radiation damping and the three-body problem /

Wardell, Zachary, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 62-63). Also available on the Internet.
34

Conformal holonomy and theoretical gravitational physics

Reid, James Andrew January 2014 (has links)
Conformal holonomy theory is the holonomy theory of the tractor connection on a conformal manifold. In this thesis, we present the first application of conformal holonomy theory to theoretical physics and determine the conformal holonomy groups/algebras of physically relevant spaces. After recalling some necessary background on conformal structures, tractor bundles and conformal holonomy theory in chapter 1, we begin in chapter 2 by discussing the role of conformal holonomy in the gauge-theoretic MacDowell-Mansouri formulation of general relativity. We show that the gauge algebra of this formulation is uniquely determined by the conformal structure of spacetime itself, in both Lorentzian and Riemannian metric signatures, through the conformal holonomy algebra. We then show that one may construct a MacDowell-Mansouri action functional for scale-invariant gravity, and we discuss a geometric interpretation for the scalar field therein. In chapter 3 we study a class of spacetimes relevant to Maldacena's AdS5=CFT4 correspondence in quantum gravity. It is well known that a Lie group coincidence lies at the heart of this correspondence: the proper isometry group of the bulk precisely matches the conformal group of the boundary. It has previously been proposed that the AdS5=CFT4 correspondence be extended to so-called Poincar e-Einstein spacetimes, which need not be as symmetric as anti-de Sitter space. We show that the conformal holonomy groups of the boundary and bulk furnish such a Lie group coincidence for 5-dimensional Poincar e-Einstein spacetimes in general. We completely characterise this boundary-bulk conformal holonomy matching for the Riemannian theory and present partial results for the Lorentzian theory. In chapter 4 we use the tools developed in the preceding chapters to further the classiification of the conformal holonomy groups of conformally Einstein spaces. Specifically, we determine the conformal holonomy groups of generic neutral signature conformally Einstein 4-manifolds subject to a condition on the conformal holonomy representation. Lastly, in chapter 5, we investigate the conformal holonomy reduction of the Fefferman conformal structures of residual twistor CR manifolds. A sufficient condition for reducible conformal holonomy is that the (Fefferman conformal structure of a) residual twistor CR manifold admit a parallel tractor. We show that this occurs if and only if the residual twistor CR manifold admits a Sasakian structure.
35

A numerical treatment of spin-1/2 fields coupled to gravity

Ventrella, Jason Firmin, 1974- 16 June 2011 (has links)
Not available / text
36

Gauge fields in general relativistic cosmologies

Yamamoto, Kei January 2013 (has links)
No description available.
37

The global structure of spherically symmetric charged scalar field spacetimes

Kommemi, Jonathan David January 2013 (has links)
No description available.
38

On the status of the geodesic law in general relativity.

Nevin, Jennifer Margaret. January 1998 (has links)
The geodesic law for test particles is one of the fundamental principles of general relativity and is extensively used. It is thought to be a consequence of the field laws but no rigorous proof exists. This thesis is concerned with a precise formulation of the geodesic law for test particles and with the extent of its validity. It will be shown to be true in certain cases but not in others. A rigorous version of the Infeld/Schild theorem is presented. Several explicit examples of both geodesic and non-geodesic motion of singularities are given. In the case of a test particle derived from a test body with a regular internal stress-energy tensor, a proof of the geodesic law for an ideal fluid test particle under plausible, explicitly stated conditions is given. It is also shown that the geodesic law is not generally true, even for weak fields and slow motion, unless the stress-energy tensor satisfies certain conditions. An explicit example using post-Newtonian theory is given showing how the geodesic law can be violated if these conditions are not satisfied. / Thesis (Ph.D.)-University of Natal, Durban, 1998.
39

Anisotropic stars in general relativity.

Chaisi, Mosa. January 2004 (has links)
In this thesis we seek new solutions to the anisotropic Einstein field equations which are important in the study of highly dense stellar structures. We first adopt the approach used by Maharaj & Maartens (1989) to obtain an exact anisotropic solution in terms of elementary functions for a particular choice of the energy density. This class of solution contains the Maharaj & Maartens (1989) and Gokhroo & Mehra (1994) models as special cases. In addition, we obtain six other new solutions following the same approach for different choices of the energy density. All the solutions in this section reduce to one with the energy density profile f-L ex r-2 . Two new algorithms are generated, Algorithm A and Algorithm B, which produce a new anisotropic solution to the Einstein field equations from a given isotropic solution. For any new anisotropic solution generated with the help of these algorithms, the original isotropic seed solution is regained as a special case. Two examples of known isotropic solutions are used to demonstrate how Algorithm A and Algorithm B work, and to obtain new anisotropic solutions for the Einstein and de Sitter models. Anisotropic isot~ermal sphere models are generated given the corresponding isotropic (f-L ex r-2 ) solution of the Einstein field equations. Also, anisotropic interior Schwarzschild sphere models are found given the corresponding isotropic (f-L ex constant) solution of the field equations. The exact solutions and line elements are given in each case for both Algorithm A and Algorithm B. Note that the solutions have a simple form and are all expressible in terms of elementary functions. Plots for the anisotropic factor S = J3(Pr - pJJ/2 (where Pr and Pl. are radial and tangential pressure respectively) are generated and these point to physically viable models. / Thesis (Ph.D.)-University of Natal, Durban, 2004.
40

Cosmological models and the deceleration parameter.

Naidoo, Ramsamy. January 1992 (has links)
In this thesis we utilise a form for the Hubble constant first proposed by Berman (1983) to study a variety of cosmological models. In particular we investigate the Robertson-Walker spacetimes, the Bianchi I spacetime, and the scalar-tensor theory of gravitation of Lau and Prokhovnik (1986). The Einstein field equations with variable cosmological constant and gravitational constant are discussed and the Friedmann models are reviewed. The relationship between observation and the Friedmann models is reviewed. We present a number of new solutions to the Einstein field equations with variable cosmological constant and gravitational constant in the Robertson-Walker spacetimes for the assumed form of the Hubble parameter. We explicitly find forms for the scale factor, cosmological constant, gravitational constant, energy density and pressure in each case. Some of the models have an equation of state for an ideal gas. The gravitational constant may be increasing in certain regions of spacetime. The Bianchi I spacetime, which is homogeneous and anisotropic, is shown to be consistent with the Berman (1983) law by defining a function which reduces to the scale factor of Robertson-Walker. We illustrate that the scalar-tensor theory of Lau and Prokhovnik (1986) also admits solutions consistent with the Hubble variation proposed by Berman. This demonstrates that this approach is useful in seeking solutions to the Einstein field equations in general relativity and alternate theories of gravity. / Thesis (M.Sc.)-University of Natal, 1992.

Page generated in 0.1157 seconds