• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 12
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 99
  • 99
  • 99
  • 25
  • 24
  • 21
  • 21
  • 20
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Newtonian and post-Newtonian cosmology / Tamath Rainsford.

Rainsford, Tamath Jane January 2000 (has links)
Includes bibliographical references (leaves 168-179). / xiii, 179 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Finds that the post-Newtonian approximation seems to be a better approximation of the general relativistic theory than the standard Newtonian theory. / Thesis (Ph.D.)--Adelaide University, Dept. of Physics and Mathematical Physics, 2001
42

General covariance, artificial gauge freedom and empirical equivalence :

Pitts, James Brian. January 2008 (has links)
Thesis (Ph. D.)--University of Notre Dame, 2008. / Thesis directed by Don Howard for the Department of History and Philosophy of Science. "July 2008." Includes bibliographical references (leaves 196-233).
43

A comprehensive Bayesian approach to gravitational wave astronomy

Littenberg, Tyson Bailey. January 2009 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Neil J. Cornish. Includes bibliographical references (leaves 137-140).
44

Constrained evolution in numerical relativity

Anderson, Matthew William, Matzner, Richard A. January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Richard Matzner. Vita. Includes bibliographical references. Available also from UMI company.
45

Buracos sônicos em superfícies esféricas

Bernardes, Bruno [UNESP] 04 May 2007 (has links) (PDF)
Made available in DSpace on 2016-05-17T16:50:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-05-04. Added 1 bitstream(s) on 2016-05-17T16:54:22Z : No. of bitstreams: 1 000855801.pdf: 618196 bytes, checksum: 88ac5f6edd9a6e08f839d677db4ca1f7 (MD5) / Nesta dissertação estudamos aspectos clássicos dos modelos análogos à Relatividade Geral em matéria condensada visando sobretudo criar uma nova percepção dos efeitos gravitacionais semi-clássicos, tais como a radiação Hawking, afim de melhor compreendê-los. Neste sentido, demonstramos que as ondas sonoras se propagando em um fluido ideal, barotrópico e irrotacional sobre uma esfera 'S POT. 2' de raio r se comportam como um campo escalar de Klein-Gordon não massivo em um espaço tempo curvo. Analisamos ao longo desta dissertação diversas propriedades deste espaço-tempo efetivo sentido pelo som, cuja geometria é descrita por uma métrica lorentziana dependente das variáveis hidrodinâmicas do fluxo, como a velocidade do fluido, sua densidade e a velocidade local do som, sempre buscando estabelecer correlações entre os conceitos clássicos da dinâmica dos fluidos e conceitos puramente relativísticos. Feita uma análise mais geral destes espaços-tempos, que denominamos de espaços-tempos acústicos, nos propomos a encontrar soluções das variáveis dinâmicas do fluido, uma vez que são elas que determinam a geometria acústica, capazes de modelar espaços-tempos efetivos dotados de horizontes de eventos e singularidades, criando portanto um buraco mudo/surdo, ou seja, um análogo de um buraco negro e de buraco branco da Relatividade Geral. Discutimos ainda alguns pontos da estrutura causal dos espaços-tempos acústicos construindo assim um diagrama de Carter-Penrose do buraco mudo/surdo com o intuito de evidenciar as possíveis trajetórias nulas deste espaço-tempo. Ademais, mostramos que na aproximação da acústica geométrica, ou também aproximação eikonal, os raios de som seguem geodésicas tipo luz do espaço-tempo acústico. Por fim, calculamos a curvatura escalar deste espaço-tempo verificando a presença... / In this dissertation we study the classical aspects of analogue models of General Relativity in condensed matter seeking mainly to create a new perception about semi-classical gravitational effects, such as Hawking radiation, in order to better comprehend them. We demonstrate that sound waves propagating in an ideal barotropic fluid with a non-homogeneous irrotacional flow, over a sphere 'S POT. 2' with radius r behave as a Klein-Gordon massless scalar field in a curved spacetime. Through this dissertation, we analyze several properties of this effective spacetime governing the propagation of sound, whose geometry is described by a Lorentzian metric that depends on the hydrodynamic variables of the flow such as the flow velocity, the density and the local speed of sound, always trying to establish correlations between classical concepts of fluid dynamics and purely relativistic concepts. Once a general analysis of these spacetimes is made, which we denominate acoustic spacetimes, we find solutions of the dynamic variables of the fluid, since they determine the acoustic geometry, capable of modeling effective spacetimes endowed with event horizons and singularities, creating therefore a dumb/deaf hole, i.e., an analogue of a black hole and white hole of the General Relativity. We further discuss some points of the causal structure of the acoustic spacetimes, so constructing a Carter-Penrose diagram of the dumb/deaf hole with the aim of bringing to evidence the possible null trajectories of this spacetime. Furthermore, we show that in the approximation of the acoustic geometry, also called eikonal approximation, the sound rays follow lightlike geodesics of the acoustic spacetime. Finally we calculate the scalar curvature of this spacetime verifying the presence of the non flat structure of the 'S POT. 2' sphere, over which the fluid moves
46

Estrutura de vínculos da gravitação via Hamilton-Jacobi : relatividade geral e teleparalelismo /

Pompéia, Pedro José. January 2003 (has links)
Orientador: Bruto Max Pimentel Escobar / Banca: Ana Lúcia Barbosa / Banca: Júlio César Fabris / Resumo: Neste trabalho estudamos a estrutura de vínculos da Relatividade Geral (RG) e do Equivalente Teleparalelo da Relatividade Geral (ETRG), utilizando o formalismo de Hamilton-Jacobi para sistemas singulares. Fazemos uma revisão destas duas teorias de gravitação e de suas formulações ADM, tendo em mente que ambas são construídas sobre variedades que são casos particulares da variedade de Riemann-Cartan. Revemos também o formalismo de Hamilton-Jacobi para o tratamento de sistemas singulares, fazendo em seguida a sua aplicação para as duas teorias supracitadas. Nesta análise constatamos que a invariância do ETRG por transformações de Lorentz no espaço tangente das tetradas faz com que a álgebra do vínculos seja diferente daquela obtida para a RG / Abstract: In this work we study the constraint structure of General Relativity (GR) and Teleparallel Equivalent of General Relativity (TEGR), using the Hamilton-Jacobi formalism for singular systems. We make a review of these two theories of gravitation and their ADM formulation, having in mind that both theories are built over manifolds that are particular cases of the Riemann-Cartan manifold. We also review the Hamilton-Jacobi formalism for singular systems, making its application to the cited theories. In this analysis we testify that the invariance of the TEGR under Lorentz transformations in the tangent space of the tetrads implies in a different constraint algebra than that obtained in GR / Mestre
47

Buracos sônicos em superfícies esféricas /

Bernardes, Bruno. January 2007 (has links)
Orientador: George Emanuel Avraam Matsas / Banca: Patricio Anibal Letelier Sotomayor / Banca: Vitório Alberto de Lorenci / Resumo: Nesta dissertação estudamos aspectos clássicos dos modelos análogos à Relatividade Geral em matéria condensada visando sobretudo criar uma nova percepção dos efeitos gravitacionais semi-clássicos, tais como a radiação Hawking, afim de melhor compreendê-los. Neste sentido, demonstramos que as ondas sonoras se propagando em um fluido ideal, barotrópico e irrotacional sobre uma esfera 'S POT. 2' de raio r se comportam como um campo escalar de Klein-Gordon não massivo em um espaço tempo curvo. Analisamos ao longo desta dissertação diversas propriedades deste espaço-tempo efetivo sentido pelo som, cuja geometria é descrita por uma métrica lorentziana dependente das variáveis hidrodinâmicas do fluxo, como a velocidade do fluido, sua densidade e a velocidade local do som, sempre buscando estabelecer correlações entre os conceitos clássicos da dinâmica dos fluidos e conceitos puramente relativísticos. Feita uma análise mais geral destes espaços-tempos, que denominamos de espaços-tempos acústicos, nos propomos a encontrar soluções das variáveis dinâmicas do fluido, uma vez que são elas que determinam a geometria acústica, capazes de modelar espaços-tempos efetivos dotados de horizontes de eventos e singularidades, criando portanto um buraco mudo/surdo, ou seja, um análogo de um buraco negro e de buraco branco da Relatividade Geral. Discutimos ainda alguns pontos da estrutura causal dos espaços-tempos acústicos construindo assim um diagrama de Carter-Penrose do buraco mudo/surdo com o intuito de evidenciar as possíveis trajetórias nulas deste espaço-tempo. Ademais, mostramos que na aproximação da acústica geométrica, ou também aproximação eikonal, os raios de som seguem geodésicas tipo luz do espaço-tempo acústico. Por fim, calculamos a curvatura escalar deste espaço-tempo verificando a presença... / Abstract: In this dissertation we study the classical aspects of analogue models of General Relativity in condensed matter seeking mainly to create a new perception about semi-classical gravitational effects, such as Hawking radiation, in order to better comprehend them. We demonstrate that sound waves propagating in an ideal barotropic fluid with a non-homogeneous irrotacional flow, over a sphere 'S POT. 2' with radius r behave as a Klein-Gordon massless scalar field in a curved spacetime. Through this dissertation, we analyze several properties of this effective spacetime governing the propagation of sound, whose geometry is described by a Lorentzian metric that depends on the hydrodynamic variables of the flow such as the flow velocity, the density and the local speed of sound, always trying to establish correlations between classical concepts of fluid dynamics and purely relativistic concepts. Once a general analysis of these spacetimes is made, which we denominate acoustic spacetimes, we find solutions of the dynamic variables of the fluid, since they determine the acoustic geometry, capable of modeling effective spacetimes endowed with event horizons and singularities, creating therefore a dumb/deaf hole, i.e., an analogue of a black hole and white hole of the General Relativity. We further discuss some points of the causal structure of the acoustic spacetimes, so constructing a Carter-Penrose diagram of the dumb/deaf hole with the aim of bringing to evidence the possible null trajectories of this spacetime. Furthermore, we show that in the approximation of the acoustic geometry, also called eikonal approximation, the sound rays follow lightlike geodesics of the acoustic spacetime. Finally we calculate the scalar curvature of this spacetime verifying the presence of the non flat structure of the 'S POT. 2' sphere, over which the fluid moves / Mestre
48

The ADM approach to numerical relativity with an implementation in spherical symmetry.

Wright, Warren Peter 15 August 2012 (has links)
M.Sc. / General Relativity, as defined by Einstein's equations, defines the geometry of the universe. In Numerical Relativity, Einstein's equations are solved with the aid of numerical methods and computers. This dissertation discusses the ADM formulation of Numerical Relativity via a Cauchy approach. (ADM refers to the initials of the discoverers of this method: Arnowitt, Deser and Misner.) When working within relativistic equations, a computer algebra code is very useful and such a code is described in this dissertation. In order to illustrate computational cost saving techniques, only spherically symmetric space-times are considered. Furthermore, we present and test a numerical code that implements the standard ADM approach in order to accurately evolve a single black hole space-time. Finally, we discuss the implementation of a maximal slicing gauge condition that refines the numerical code by giving it singularity avoidance properties.
49

The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics

Matravers, David Richard January 1973 (has links)
Introduction: The discovery of new solutions to Einstein's field equations has long been a problem in General Relativity. However due to new techniques of Newman and Penrose [1], Carter [2] and others there has been a considerable proliferation of new solutions in recent times. Consequently a new problem has arisen. How are we to interpret the new solutions physically? The tools available, despite a spate of papers in the past fifteen years, remain inadequate although often sophisticated. Any attempts at physical interpretations of metrics are beset with difficulties. There is always the possibility that two entirely different physical pictures will emerge. For example a direct approach would be to attempt an "infilling" of the metric, that is, an extension of the metric into the region occupied by the gravitating matter. However even for the Kerr [1] metric the infilling is by no means unique, in fact a most natural "infilling" turns out to be unphysical (Israel [1]). Yet few people would doubt the physical significance of the Kerr metric. Viewed in this light our attempt to discuss, among other things, the physical interpretation of type D metrics is slightly ambitious. However the problems with regard to this type of metric are not as formidable as for most of the other metrics, since we have been able to integrate the geodesic equations. Nevertheless it is still not possible to produce complete answers to all the questions posed. After a chapter on Mathematical preliminaries the study divides naturally into four sections. We start with an outline of the Hamilton-Jacobi theory of Rund [1] and then go on to show how this theory can be applied to the Carter [2] metrics. In the process we lay a foundation in the calculus of variations for Carter's work. This leads us to the construction of Killing tensors for all but one of the Kinnersley [1] type D vacuum metrics and the Cartei [2] metrics which are not necessarily vacuum metrics. The geodesic equations, for these metrics, are integrated using the Hamilton-Jacobi procedure. The remaining chapters are devoted to the Kinnersley [1] type D vacuum metrics. We omit his class I metrics since these are the Schwarzschild metrics, and have been studied in detail before. Chapter three is devoted to a general study of his class II a metric, a generalisation of the Kerr [1] and NUT (Newman, Tamburino and Unti [1]) metrics. We integrate the geodesic equations and discuss certain general properties: the question of geodesic completeness, the asymptotic properties, and the existence of Killing horizons. Chapter four is concerned with the interpretation of the new parameter 'l', that arises in the class II a and NUT metrics. This parameter was interpreted by Demianski and Newman [1] as a magnetic monopole of mass. Our work centers on the possibility of obtaining observable effects from the presence of 'l'. We have been able to show that its presence is observable, at least in principle, from a study of the motion of particles in the field. In the first place, if l is comparable to the mass of the gravitating system, a comparatively large perihelion shift is to be expected. The possibility of anomalous behaviour in the orbits of test particles, quite unlike anything that occurs in a Newtonian or Schwarzschild field, also arises. In the fifth chapter the Kinnersley class IV metrics are considered. These metrics, which in their simplest form have been known for some time, present serious problems and no interpretations have been suggested. Our discussion is essentially exploratory and the information that does emerge takes the form of suggestions rather than conclusions. Intrinsically the metrics give the impression that interesting results should be obtainable since they are asymptotically flat in certain directions. However the case that we have dealt with does not appear to represent a radiation metric.
50

A re-examination of the Carter solutions of Einstein's field equations

Kun, A Ah January 1979 (has links)
The study of geodesics in space-time is essential to a comprehensive understanding of the physics of the field. Global properties, e.g. the singularity structure and completeness of space-time, can be related to the geodesic properties, thus it is through the solutions of the geodesic equation of motion that many of the global properties of space-time can be obtained in an easily interpretable form. However, it is usually very difficult to integrate the geodesic equations for the particle motion in the presence of a gravitational field (Introduction, p. 1)

Page generated in 0.1082 seconds