Spelling suggestions: "subject:"deneral relativity (fhysics)"" "subject:"deneral relativity (ephysics)""
61 |
Computational and astrophysical studies of black hole spacetimesBonning, Erin Wells 28 August 2008 (has links)
Not available / text
|
62 |
Radiating solutions with heat flow in general relativity.Govender, Megandren. January 1994 (has links)
In this thesis we model spherically symmetric radiating stars dissipating energy in
the form of a radial heat flux. We assume that the spacetime for the interior matter
distribution is shear-free. The junction conditions necessary for the matching of the
exterior Vaidya solution to an interior radiating line element are obtained. In particular
we show that the pressure at the boundary of the star is nonvanishing when the
star is radiating (Santos 1985). The junction conditions, with a nonvanishing cosmological
constant, were obtained. This generalises the results of Santos (1985) and we
believe that this is an original result. The Kramer (1992) model is reviewed in detail
and extended. The evolution of this model depends on a function of time which has
to satisfy a nonlinear second order differential equation. We solve this differential
equation in general and thereby completely describe the temporal behaviour of the
Kramer model. Graphical representations of the thermodynamical and gravitational
variables are generated with the aid of the software package MATHEMATICA Version
2.0 (Wolfram 1991). We also analyse two other techniques to generate exact
solutions to the Einstein field equations for modelling radiating stars. In the first
case the particle trajectories are assumed to be geodesics. We indicate how the model
of Kolassis et al (1988) may be extended by providing an ansatz to solve a second
order differential equation. In the second case we review the models of de Oliveira
et al (1985, 1986, 1988) where the gravitational potentials are separable functions of
the spatial and temporal coordinates. / Thesis (M.Sc.)-University of Natal, 1994.
|
63 |
Spherically symmetric cosmological solutions.Govender, Jagathesan. January 1996 (has links)
This thesis examines the role of shear in inhomogeneous spherically symmetric spacetimes
in the field of general relativity. The Einstein field equations are derived for
a perfect fluid source in comoving coordinates. By assuming a barotropic equation
of state, two classes of nonaccelerating solutions are obtained for the Einstein field
equations. The first class has equation of state p = ⅓µ and the second class, with
equation of state p = µ, generalises the models of Van den Bergh and Wils (1985).
For a particular choice of a metric potential a new class of solutions is found which
is expressible in terms of elliptic functions of the first and third kind in general. A
class of nonexpanding cosmological models is briefly studied. The method of Lie
symmetries of differential equations generates a self-similar variable which reduces
the field and conservation equations to a system of ordinary differential equations.
The behaviour of the gravitational field in this case is governed by a Riccati equation
which is solved in general. Another class of solutions is obtained by making an ad
hoc choice for one of the gravitational potentials. It is demonstrated that for a stiff
fluid a particular case of the generalised Emden-Fowler equation arises. / Thesis (Ph.D.)-University of Natal, Durban, 1996.
|
64 |
Conformally invariant relativistic solutions.Maharaj, M. S. January 1993 (has links)
The study of exact solutions to the Einstein and Einstein-Maxwell field equations,
by imposing a symmetry requirement on the manifold, has been the subject of much
recent research. In this thesis we consider specifically conformal symmetries in static
and nonstatic spherically symmetric spacetimes. We find conformally invariant solutions,
for spherically symmetric vectors, to the Einstein-Maxwell field equations
for static spacetimes. These solutions generalise results found previously and have
the advantage of being regular in the interior of the sphere. The general solution to
the conformal Killing vector equation for static spherically symmetric spacetimes is
found. This solution is subject to integrability conditions that place restrictions on
the metric functions. From the general solution we regain the special cases of Killing
vectors, homothetic vectors and spherically symmetric vectors with a static conformal
factor. Inheriting conformal vectors in static spacetimes are also identified. We
find a new class of accelerating, expanding and shearing cosmological solutions in
nonstatic spherically symmetric spacetimes. These solutions satisfy an equation of
state which is a generalisation of the stiff equation of state. We also show that this
solution admits a conformal Killing vector which is explicitly obtained. / Thesis (Ph.D.)-University of Natal, Durban, 1993.
|
65 |
Conformal motions in Bianchi I spacetime.Lortan, Darren Brendan. January 1992 (has links)
In this thesis we study the physical properties of the manifold in general relativity that admits a conformal motion. The results obtained are general as the metric tensor field is not specified. We obtain the Lie derivative along a conformal Killing vector of the kinematical and dynamical quantities for the general energy-momentum tensor of neutral matter. Equations obtained previously are regained as special cases from our results. We also find the Lie derivative of the energy-momentum tensor for the electromagnetic field. In particular we comprehensively study conformal symmetries in the Bianchi I spacetime. The conformal Killing vector equation is integrated to obtain the general conformal Killing vector and the conformal factor subject to
integrability conditions. These conditions place restrictions on the metric functions. A particular solution is exhibited which demonstrates that these conditions have a nonempty solution set. The solution obtained is a generalisation of the results of Moodley (1991) who considered locally rotationally symmetric spacetimes. The Killing vectors are regained as special cases of the conformal solution. There do not exist any proper special conformal Killing vectors in the Bianchi I spacetime. The homothetic vector is found for a nonvanishing constant conformal factor. We establish that the vacuum Kasner solution is the only Bianchi I spacetime that admits a homothetic vector. Furthermore we isolate a class of vectors from the solution which causes the Bianchi I model to degenerate into a spacetime of higher symmetry. / Thesis (M.Sc.)-University of KwaZulu-Natal, 1992.
|
66 |
On Stephani universes.Moopanar, Selvandren. January 1992 (has links)
In this dissertation we study conformal symmetries in the Stephani universe which is
a generalisation of the Robertson-Walker models. The kinematics and dynamics of
the Stephani universe are discussed. The conformal Killing vector equation for the
Stephani metric is integrated to obtain the general solution subject to integrability
conditions that restrict the metric functions. Explicit forms are obtained for the
conformal Killing vector as well as the conformal factor . There are three categories
of solution. The solution may be categorized in terms of the metric functions k and
R. As the case kR - kR = 0 is the most complicated, we provide all the details of
the integration procedure. We write the solution in compact vector notation. As the
case k = 0 is simple, we only state the solution without any details. In this case
we exhibit a conformal Killing vector normal to hypersurfaces t = constant which is
an analogue of a vector in the k = 0 Robertson-Walker spacetimes. The above two
cases contain the conformal Killing vectors of Robertson-Walker spacetimes. For
the last case in - kR = 0, k =I 0 we provide an outline of the integration process.
This case gives conformal Killing vectors which do not reduce to those of RobertsonWalker
spacetimes. A number of the calculations performed in finding the solution
of the conformal Killing vector equation are extremely difficult to analyse by hand.
We therefore utilise the symbolic manipulation capabilities of Mathematica (Ver 2.0)
(Wolfram 1991) to assist with calculations. / Thesis (M.Sc.)-University of Natal, Durban, 1992.
|
67 |
Aspects of spherically symmetric cosmological models.Moodley, Kavilan. January 1998 (has links)
In this thesis we consider spherically symmetric cosmological models when the shear
is nonzero and also cases when the shear is vanishing. We investigate the role of
the Emden-Fowler equation which governs the behaviour of the gravitational field.
The Einstein field equations are derived in comoving coordinates for a spherically
symmetric line element and a perfect fluid source for charged and uncharged matter.
It is possible to reduce the system of field equations under different assumptions to
the solution of a particular Emden-Fowler equation. The situations in which the
Emden-Fowler equation arises are identified and studied. We analyse the Emden-Fowler
equation via the method of Lie point symmetries. The conditions under which
this equation is reduced to quadratures are obtained. The Lie analysis is applied to
the particular models of Herlt (1996), Govender (1996) and Maharaj et al (1996) and
the role of the Emden-Fowler equation is highlighted. We establish the uniqueness
of the solutions of Maharaj et al (1996). Some physical features of the Einstein-Maxwell
system are noted which distinguishes charged solutions. A charged analogue
of the Maharaj et al (1993) spherically symmetric solution is obtained. The Gutman-Bespal'ko
(1967) solution is recovered as a special case within this class of solutions
by fixing the parameters and setting the charge to zero. It is also demonstrated
that, under the assumptions of vanishing acceleration and proper charge density,
the Emden-Fowler equation arises as a governing equation in charged spherically
symmetric models. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
|
68 |
Applications of embedding theory in higher dimensional general relativity.Moodley, Jothi. 22 April 2014 (has links)
The study of embeddings is applicable and signicant to higher dimensional theories of
our universe, high-energy physics and classical general relativity. In this thesis we investigate
local and global isometric embeddings of four-dimensional spherically symmetric
spacetimes into five-dimensional Einstein manifolds. Theorems have been established
that guarantee the existence of such embeddings. However, most known explicit results
concern embedded spaces with relatively simple Ricci curvature. We consider the four-dimensional
gravitational field of a global monopole, a simple non-vacuum space with
a more complicated Ricci tensor, which is of theoretical interest in its own right, and
occurs as a limit in Einstein-Gauss-Bonnet Kaluza-Klein black holes, and we obtain
an exact solution for its embedding into Minkowski space. Our local embedding space
can be used to construct global embedding spaces, including a globally
at space and
several types of cosmic strings. We present an analysis of the result and comment on
its signicance in the context of induced matter theory and the Einstein-Gauss-Bonnet
gravity scenario where it can be viewed as a local embedding into a Kaluza-Klein black
hole. Difficulties in solving the five-dimensional equations for given four-dimensional
spaces motivate us to investigate which embedded spaces admit bulks of a specific type.
We show that the general Schwarzschild-de Sitter spacetime and the Einstein Universe
are the only spherically symmetric spacetimes that can be embedded into an Einstein
space with a particular metric form, and we discuss their five-dimensional solutions.
Furthermore, we determine that the only spherically symmetric spacetime in retarded
time coordinates that can be embedded into a particular Einstein bulk is the general
Vaidya-de Sitter solution with constant mass. These analyses help to provide insight to
the general embedding problem. We also consider the conformal Killing geometry of a
five-dimensional Einstein space that embeds a static spherically symmetric spacetime,
and we show how the Killing geometry of the embedded space is inherited by its bulk.
The study of embedding properties such as these enables a deeper mathematical understanding
of higher dimensional cosmological models and is also of physical interest
as conformal symmetries encode conservation laws. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
|
69 |
Spherically symmetric solutions in relativistic astrophysics.John, Anslyn James. January 2002 (has links)
In this thesis we study classes of static spherically symmetric spacetimes admitting a perfect
fluid source, electromagnetic fields and anisotropic pressures. Our intention is to generate
exact solutions that model the interior of dense, relativistic stars. We find a sufficient
condition for the existence of series solutions to the condition of pressure isotropy for neutral
isolated spheres. The existence of a series solution is demonstrated by the method of
Frobenius. With the help of MATHEMATICA (Wolfram 1991) we recovered the Tolman
VII model for a quadratic gravitational potential, but failed to obtain other known classes
of solution. This establishes the weakness, in certain instances, of symbolic manipulation
software to extract series solutions from differential equations. For a cubic potential, we
obtained a new series solution to the Einstein field equations describing neutral stars. The
gravitational and thermodynamic variables are non-singular and continuous. This model also
satisfies the important barotropic equation of state p = p(p). Two new exact solutions to
the Einstein-Maxwell system, that generalise previous results for uncharged stars, were also
found. The first of these generalises the solution of Maharaj and Mkhwanazi (1996), and has
well-behaved matter and curvature variables. The second solution reduces to the Durgapal
and Bannerji (1983) model in the uncharged limit; this new result may only serve as a toy
model for quark stars because of negative energy densities. In both examples we observe that
the solutions may be expressed in terms of hypergeometric and elementary functions; this
indicates the possibility of unifying isolated solutions under the hypergeometric equation.
We also briefly study compact stars with spheroidal geometry, that may be charged or admit
anisotropic pressure distributions. The adapted forms of the pressure isotropy condition can
be written as a harmonic oscillator equation. Two simple examples are presented. / Thesis (M.Sc.)-University of Natal, Durban, 2002.
|
70 |
Some effects of spacetime curvature in general relativity /McClune, James C. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
|
Page generated in 0.0905 seconds