Spelling suggestions: "subject:"generative adversarial betworks"" "subject:"generative adversarial conetworks""
71 |
[en] ATROUS CGAN FOR SAR TO OPTICAL IMAGE TRANSLATION / [pt] ATROUS CGAN PARA TRADUÇÃO DE IMAGENS SAR À ÓTICAJAVIER NOA TURNES 18 November 2020 (has links)
[pt] A captura de cenas de cobertura da Terra com sensores óticos de satélite é frequentemente limitada pela presença de nuvens que corrompem as imagens coletadas. Entre os métodos para recuperar imagens óticas de satélite corrompidas por nuvens, várias abordagens de tradução de imagemimagem
usando Redes Adversárias Generativas (GANs) têm surgido com bons resultados, conseguindo criar imagens óticas realistas a partir de imagens de Radar de Abertura Sintética (SAR). Os métodos baseados
em GANs condicionais (cGAN) propostos até agora para a síntese de imagens SAR-óticas tendem a produzir imagens ruidosas e com pouca nitidez. Neste trabalho, propomos a atrous-cGAN, uma nova arquitetura
que melhora a transformação de imagem SAR em ótica. As redes propostas para o gerador e discriminador contam com convolusões dilatadas (atrous) e incorporam o módulo Pirâmide Espacial Atrous Pooling (ASPP) para realçar detalhes finos na imagem ótica gerada, explorando o contexto espacial em várias escalas. Este trabalho apresenta experimentos realizados para avaliar o desempenho da atrous-cGAN na síntese de imagens Landsat a partir de dados Sentinel-1A, usando quatro bases de dados públicas. A análise experimental indicou que a atrous-cGAN supera o modelo clássico pix2pix como uma ferramenta de aprendizado de atributos para segmentação semântica. A proposta também gera imagens com maior qualidade visual, e em geral com maior semelhança com a verdadeira imagem ótica. / [en] The capture of land cover scenes with optical satellite sensors is often constrained by the presence of clouds that corrupt the collected images. Among the methods for recovering satellite optical images corrupted by clouds, several image to image translation approaches using Generative Adversarial
Networks (GANs) have emerged with profitable results, managing to create realistic optical images from Synthetic Aperture Radar (SAR) data. Conditional GAN (cGAN) based methods proposed so far for SAR-to-optical image synthesis tend to produce noisy and unsharp optical outcomes. In this work, we propose the atrous-cGAN, a novel cGAN architecture that improves the SAR-to-optical image translation. The proposed generator and discriminator networks rely on atrous convolutions and incorporate the Atrous
Spatial Pyramid Pooling (ASPP) module to enhance fine details in the generated optical image by exploiting spatial context at multiple scales. This work reports experiments carried out to assess the performance of atrouscGAN for the synthesis of Landsat images from Sentinel-1A data based on four public datasets. The experimental analysis indicated that the atrouscGAN overcomes the classical pix2pix model as a feature learning tool for semantic segmentation. The proposal also generates higher visual quality images, in general with higher similarity with the true optical image.
|
72 |
Improving Satellite Data Quality and Availability: A Deep Learning ApproachMukherjee, Rohit January 2020 (has links)
No description available.
|
73 |
Training Neural Models for Abstractive Text SummarizationKryściński, Wojciech January 2018 (has links)
Abstractive text summarization aims to condense long textual documents into a short, human-readable form while preserving the most important information from the source document. A common approach to training summarization models is by using maximum likelihood estimation with the teacher forcing strategy. Despite its popularity, this method has been shown to yield models with suboptimal performance at inference time. This work examines how using alternative, task-specific training signals affects the performance of summarization models. Two novel training signals are proposed and evaluated as part of this work. One, a novelty metric, measuring the overlap between n-grams in the summary and the summarized article. The other, utilizing a discriminator model to distinguish human-written summaries from generated ones on a word-level basis. Empirical results show that using the mentioned metrics as rewards for policy gradient training yields significant performance gains measured by ROUGE scores, novelty scores and human evaluation. / Abstraktiv textsammanfattning syftar på att korta ner långa textdokument till en förkortad, mänskligt läsbar form, samtidigt som den viktigaste informationen i källdokumentet bevaras. Ett vanligt tillvägagångssätt för att träna sammanfattningsmodeller är att använda maximum likelihood-estimering med teacher-forcing-strategin. Trots dess popularitet har denna metod visat sig ge modeller med suboptimal prestanda vid inferens. I det här arbetet undersöks hur användningen av alternativa, uppgiftsspecifika träningssignaler påverkar sammanfattningsmodellens prestanda. Två nya träningssignaler föreslås och utvärderas som en del av detta arbete. Den första, vilket är en ny metrik, mäter överlappningen mellan n-gram i sammanfattningen och den sammanfattade artikeln. Den andra använder en diskrimineringsmodell för att skilja mänskliga skriftliga sammanfattningar från genererade på ordnivå. Empiriska resultat visar att användandet av de nämnda mätvärdena som belöningar för policygradient-träning ger betydande prestationsvinster mätt med ROUGE-score, novelty score och mänsklig utvärdering.
|
74 |
Restaurant Daily Revenue Prediction : Utilizing Synthetic Time Series Data for Improved Model PerformanceJarlöv, Stella, Svensson Dahl, Anton January 2023 (has links)
This study aims to enhance the accuracy of a demand forecasting model, XGBoost, by incorporating synthetic multivariate restaurant time series data during the training process. The research addresses the limited availability of training data by generating synthetic data using TimeGAN, a generative adversarial deep neural network tailored for time series data. A one-year daily time series dataset, comprising numerical and categorical features based on a real restaurant's sales history, supplemented by relevant external data, serves as the original data. TimeGAN learns from this dataset to create synthetic data that closely resembles the original data in terms of temporal and distributional dynamics. Statistical and visual analyses demonstrate a strong similarity between the synthetic and original data. To evaluate the usefulness of the synthetic data, an experiment is conducted where varying lengths of synthetic data are iteratively combined with the one-year real dataset. Each iteration involves retraining the XGBoost model and assessing its accuracy for a one-week forecast using the Root Mean Square Error (RMSE). The results indicate that incorporating 6 years of synthetic data improves the model's performance by 65%. The hyperparameter configurations suggest that deeper tree structures benefit the XGBoost model when synthetic data is added. Furthermore, the model exhibits improved feature selection with an increased amount of training data. This study demonstrates that incorporating synthetic data closely resembling the original data can effectively enhance the accuracy of predictive models, particularly when training data is limited.
|
75 |
SELF-SUPERVISED ONE-SHOT LEARNING FOR AUTOMATIC SEGMENTATION OF GAN-GENERATED IMAGESAnkit V Manerikar (16523988) 11 July 2023 (has links)
<p>Generative Adversarial Networks (GANs) have consistently defined the state-of-the-art in the generative modelling of high-quality images in several applications. The images generated using GANs, however, do not lend themselves to being directly used in supervised learning tasks without first being curated through annotations. This dissertation investigates how to carry out automatic on-the-fly segmentation of GAN-generated images and how this can be applied to the problem of producing high-quality simulated data for X-ray based security screening. The research exploits the hidden layer properties of GAN models in a self-supervised learning framework for the automatic one-shot segmentation of images created by a style-based GAN. The framework consists of a novel contrastive learner that is based on a Sinkhorn distance-based clustering algorithm and that learns a compact feature space for per-pixel classification of the GAN-generated images. This facilitates faster learning of the feature vectors for one-shot segmentation and allows on-the-fly automatic annotation of the GAN images. We have tested our framework on a number of standard benchmarks (CelebA, PASCAL, LSUN) to yield a segmentation performance that not only exceeds the semi-supervised baselines by an average wIoU margin of 1.02 % but also improves the inference speeds by a factor of 4.5. This dissertation also presents BagGAN, an extension of our framework to the problem domain of X-ray based baggage screening. BagGAN produces annotated synthetic baggage X-ray scans to train machine-learning algorithms for the detection of prohibited items during security screening. We have compared the images generated by BagGAN with those created by deterministic ray-tracing models for X-ray simulation and have observed that our GAN-based baggage simulator yields a significantly improved performance in terms of image fidelity and diversity. The BagGAN framework is also tested on the PIDRay and other baggage screening benchmarks to produce segmentation results comparable to their respective baseline segmenters based on manual annotations.</p>
|
76 |
[pt] APRIMORANDO A SÍNTESE DE IMAGENS A PARTIR DE TEXTO UTILIZANDO TRANSFERÊNCIA DE APRENDIZADO U2C / [en] IMPROVING TEXT-TO-IMAGE SYNTHESIS WITH U2C - TRANSFER LEARNINGVINICIUS GOMES PEREIRA 06 February 2024 (has links)
[pt] As Redes Generativas Adversariais (GANs) são modelos não supervisionados capazes de aprender a partir de um número indefinidamente grande
de imagens. Entretanto, modelos que geram imagens a partir de linguagem
dependem de dados rotulados de alta qualidade, que são escassos. A transferência de aprendizado é uma técnica conhecida que alivia a necessidade de
dados rotulados, embora transformar um modelo gerativo incondicional em um
modelo condicionado a texto não seja uma tarefa trivial. Este trabalho propõe uma abordagem de ajuste simples, porém eficaz, chamada U2C transfer.
Esta abordagem é capaz de aproveitar modelos pré-treinados não condicionados enquanto aprende a respeitar as condições textuais fornecidas. Avaliamos
a eficiência do U2C transfer ao ajustar o StyleGAN2 em duas das fontes de
dados mais utilizadas para a geração images a partir de texto, resultando
na arquitetura Text-Conditioned StyleGAN2 (TC-StyleGAN2). Nossos modelos alcançaram rapidamente o estado da arte nas bases de dados CUB-200 e
Oxford-102, com valores de FID de 7.49 e 9.47, respectivamente. Esses valores
representam ganhos relativos de 7 por cento e 68 por cento, respectivamente, em comparação
com trabalhos anteriores. Demonstramos que nosso método é capaz de aprender detalhes refinados a partir de consultas de texto, produzindo imagens fotorrealistas e detalhadas. Além disso, mostramos que os modelos organizam o
espaço intermediário de maneira semanticamente significativa. Nossas descobertas revelam que as imagens sintetizadas usando nossa técnica proposta não
são apenas críveis, mas também exibem forte alinhamento com suas descrições
textuais correspondentes. De fato, os escores de alinhamento textual alcançados por nosso método são impressionantemente e comparáveis aos das imagens
reais. / [en] Generative Adversarial Networks (GANs) are unsupervised models that
can learn from an indefinitely large amount of images. On the other hand,
models that generate images from language queries depend on high-quality
labeled data that is scarce. Transfer learning is a known technique that alleviates the need for labeled data, though it is not trivial to turn an unconditional
generative model into a text-conditioned one. This work proposes a simple,
yet effective fine-tuning approach, called Unconditional-to-Conditional Transfer Learning (U2C transfer). It can leverage well-established pre-trained models
while learning to respect the given textual condition conditions. We evaluate
U2C transfer efficiency by fine-tuning StyleGAN2 in two of the most widely
used text-to-image data sources, generating the Text-Conditioned StyleGAN2
(TC-StyleGAN2). Our models quickly achieved state-of-the-art results in the
CUB-200 and Oxford-102 datasets, with FID values of 7.49 and 9.47, respectively. These values represent relative gains of 7 percent and 68 percent compared to prior
work. We show that our method is capable of learning fine-grained details from
text queries while producing photorealistic and detailed images. Our findings
highlight that the images created using our proposed technique are credible
and display a robust alignment with their corresponding textual descriptions.
|
77 |
Random projections in a distributed environment for privacy-preserved deep learning / Slumpmässiga projektioner i en distribuerad miljö för privatiserad djupinlärningBagger Toräng, Malcolm January 2021 (has links)
The field of Deep Learning (DL) only over the last decade has proven useful for increasingly more complex Machine Learning tasks and data, a notable milestone being generative models achieving facial synthesis indistinguishable from real faces. With the increased complexity in DL architecture and training data, follows a steep increase in time and hardware resources required for the training task. These resources are easily accessible via cloud-based platforms if the data owner is willing to share its training data. To allow for cloud-sharing of its training data, The Swedish Transport Administration (TRV) is interested in evaluating resource effective, infrastructure independent, privacy-preserving obfuscation methods to be used on real-time collected data on distributed Internet-of-Things (IoT) devices. A fundamental problem in this setting is to balance the trade-off between privacy and DL utility of the obfuscated training data. We identify statistically measurable relevant metrics of privacy achievable via obfuscation and compare two prominent alternatives from the literature, optimization-based methods (OBM) and random projections (RP). OBM achieve privacy via direct optimization towards a metric, preserving utility-crucial patterns in the data, and is typically in addition evaluated in terms of a DL-based adversary’s sensitive feature estimation error. RP project data via a random matrix to lower dimensions to preserve sample pair-wise distances while offering privacy in terms of difficulty in data recovery. The goals of the project centered around evaluating RP on privacy metric results previously attained for OBM, compare adversarial feature estimation error in OBM and RP, as well as to address the possibly infeasible learning task of using composite multi-device datasets generated using independent projection matrices. The last goal is relevant to TRV in that multiple devices are likely to contribute to the same composite dataset. Our results complement previous research in that they indicate that both privacy and utility guarantees in a distributed setting, vary depending on data type and learning task. These results favor OBM that theoretically should offer more robust guarantees. Our results and conclusions would encourage further experimentation with RP in a distributed setting to better understand the influence of data type and learning task on privacy-utility, target-distributed data sources being a promising starting point. / Forskningsområdet Deep Learning (DL) bara under det senaste decenniet har visat sig vara användbart för allt mer komplexa maskinginlärnings-uppgifter och data, en anmärkningsvärd milstolpe är generativa modeller som erhåller verklighetstrogna syntetiska ansiktsbilder. Med den ökade komplexiteten i DL -arkitektur och träningsdata följer ett kraftigt ökat behov av tid och hårdvaruresurser för träningsuppgiften. Dessa resurser är lättillgängliga via molnbaserade plattformar om dataägaren är villig att dela sin träningsdata. För att möjliggöra molndelning av träningsdata är Trafikverket (TRV) intresserat av att utvärdera resurseffektiva, infrastrukturoberoende, privatiserade obfuskeringsmetoder som ska användas på data hämtad i realtid via distribuerade Internet-of-Things ( IoT) -enheter; det grundläggande problemet är avvägningen mellan privatisering och användbarhet av datan i DL-syfte. Vi identifierar statistiskt mätbara relevanta mått av privatisering som kan uppnås via obfuskering och jämför två framstående alternativ från litteraturen, optimeringsbaserade metoder (OBM) och slumpmässiga projektioner (RP). OBM uppnår privatisering via matematisk optimering av ett mått av data-privatisering, vilket bevarar övriga nödvändiga mönster i data för DL-uppgiften. OBM-metoder utvärderas vanligtvis i termer av en DL-baserad motståndares uppskattningsfel av känsliga attribut i datan. RP obfuskerar data via en slumpmässig projektion till lägre dimensioner för att bevara avstånd mellan datapunkter samtidigt som de erbjuder privatisering genom teoretisk svårighet i dataåterställning. Målen för examensarbetet centrerades kring utvärdering av RP på privatiserings-mått som tidigare uppnåtts för OBM, att jämföra DL-baserade motståndares uppskattningsfel på data från OBM och RP, samt att ta itu med den befarat omöjliga inlärningsuppgiften att använda sammansatta dataset från flera IoT-enheter som använder oberoende projektionsmatriser. Sistnämnda målet är relevant i en miljö sådan som TRVs, där flera IoT-enheter oberoende bidrar till ett och samma dataset och DL-uppgift. Våra resultat kompletterar tidigare forskning genom att de indikerar att både privatisering och användbarhetsgarantier i en distribuerad miljö varierar beroende på datatyp och inlärningsuppgift. Dessa resultat gynnar OBM som teoretiskt sett bör erbjuda mer robusta garantier vad gäller användbarhet. Våra resultat och slutsatser uppmuntrar framtida experiment med RP i en distribuerad miljö för att bättre förstå inverkan av datatyp och inlärningsuppgift på graden av privatisering, datakällor distribuerade baserat på klassificerings-target är en lovande utgångspunkt.
|
78 |
Generating Geospatial Trip DataUsing Deep Neural NetworksAlhasan, Ahmed January 2022 (has links)
Synthetic data provides a good alternative to real data when the latter is not sufficientor limited by privacy requirements. In spatio-temporal applications, generating syntheticdata is generally more complex due to the existence of both spatial and temporal dependencies.Recently, with the advent of deep generative modeling such as GenerativeAdversarial Networks (GAN), synthetic data generation has seen a lot of development andsuccess. This thesis uses a GAN model based on two Recurrent Neural Networks (RNN)as a generator and a discriminator to generate new trip data for transport vehicles, wherethe data is represented as a time series. This model is compared with a standalone RNNnetwork that does not have an adversarial counterpart. The result shows that the RNNmodel (without the adversarial counterpart) performed better than the GAN model dueto the difficulty that involves training and tuning GAN models.
|
79 |
[en] DEEP GENERATIVE MODELS FOR RESERVOIR DATA: AN APPLICATION IN SMART WELLS / [pt] MODELOS GENERATIVOS PROFUNDOS PARA DADOS DE RESERVATÓRIO: UMA APLICAÇÃO EM POÇOS INTELIGENTESALLAN GURWICZ 27 May 2020 (has links)
[pt] Simulação de reservatório, que por meio de equações complexas emula fluxo em modelos de reservatório, é primordial à indústria de Óleo e Gás. Estimando o comportamento do reservatório dadas diferentes condições de entrada, permite que especialistas otimizem diversos parâmetros na etapa de projeto de campos de petróleo. Entretanto, o tempo computacional necessário para simulações está diretamente correlacionado à complexidade do modelo, que cresce exponencialmente a cada dia que se passa, já que modelos mais detalhados são necessários dada a busca por maior refinamento e redução de incertezas. Deste modo, técnicas de otimização que poderiam
significativamente melhorar os resultados de desenvolvimentos de campo podem se tornar inviáveis. Este trabalho propõe o uso de modelos generativos profundos para a geração de dados de reservatório, que podem então ser utilizados para múltiplos propósitos. Modelos generativos profundos são sistemas capazes de modelar estruturas de dados complexas, e que após treinamento robusto são capazes de amostrar dados que seguem a distribuição do conjunto de dados original. A presente aplicação foca em poços inteligentes, uma tecnologia de completação que traz diversas vantagens, dentre as quais uma melhor habilidade de monitoramento e gerenciamento de reservatórios, apesar de carregar um aumento significativo no investimento do projeto. Assim, essas otimizações previamente mencionadas se tornam indispensáveis, de forma a garantir a adoção da tecnologia, junto ao seu máximo retorno. De modo a tornar otimizações de controle de poços inteligentes viáveis dentro de um prazo razoável, redes generativas adversariais são aqui usadas para
amostrar conjuntos de dados após um número relativamente pequeno de cenários simulados. Esses dados são então utilizados para o treinamento de aproximadores, algoritmos capazes de substituir o simulador de reservatório e acelerar consideravelmente metodologias de otimização. Estudos de caso
foram realizados em modelos referência da indústria, tanto relativamente simples quanto complexos, comparando arquiteturas de redes e validando cada passo da metodologia. No modelo complexo, mais próximo de um cenário real, a metodologia foi capaz de reduzir o erro do aproximador de uma média de 18.93 por cento, para 9.71 por cento. / [en] Reservoir simulation, which via complex equations emulates flow in reservoir models, is paramount to the Oil e Gas industry. By estimating the behavior of the reservoir given different input conditions, it allows specialists to optimize various parameters in the oilfield project stage. Alas, the computational time needed for simulations is directly correlated to the complexity of the model, which grows exponentially with each passing day as more intricate and detailed reservoir models are needed, seeking better refinement and uncertainty reduction. As such, optimization techniques which could greatly improve the results of field developments may be made unfeasible. This work proposes the use of deep generative models for the generation of reservoir data, which may then be used for multiple purposes. Deep generative models are systems capable of modeling complex data structures, which after robust training are capable of sampling data following the same distribution of the original dataset. The present application focuses on smart wells, a technology for completions which brings about a plethora of advantages, among which the better ability for reservoir monitoring and management, although also carrying a significant increase in project investment. As such, these previously mentioned optimizations turn indispensable as to guarantee the adoption of the technology, along with its maximum possible return. As to make smart well control optimizations viable within a reasonable time frame, generative adversarial networks are here used to sample datasets after a
relatively small number of simulated scenarios. These datasets are then used for the training of proxies, algorithms able to substitute the reservoir simulator and considerably speed up optimization methodologies. Case studies were done in both relatively simple and complex industry benchmark
models, comparing network architectures and validating each step of the methodology. In the complex model, closest to a real-world scenario, the methodology was able to reduce the proxy error from an average of 18.93 percent, to 9.71 percent.
|
80 |
Coverage Manifold Estimation in Cellular Networks via Conditional GANsVeni Goyal (18457590) 29 April 2024 (has links)
<p dir="ltr">This research introduces an approach utilizing a novel conditional generative adversarial network (cGAN) tailored specifically for the prediction of cellular network coverage. In comparison to state-of-the-art method convolutional neural networks (CNNs), our cGAN model offers a significant improvement by translating base station locations within any Region-of-Interest (RoI) into precise coverage probability values within a designated region-of-evaluation (RoE). </p><p dir="ltr">By leveraging base station location data from diverse geographical and infrastructural landscapes spanning regions like India, the USA, Germany, and Brazil, our model demonstrates superior predictive performance compared to existing CNN-based approaches. Notably, the prediction error, as quantified by the L1 norm, is reduced by two orders of magnitude in comparison to state-of-the-art CNN models.</p><p dir="ltr">Furthermore, the coverage manifolds generated by our cGAN model closely resemble those produced by conventional simulation methods, indicating a substantial advancement in both prediction accuracy and visual fidelity. This achievement underscores the potential of cGANs in enhancing the precision and reliability of cellular network performance prediction, offering promising implications for optimizing network planning and deployment strategies.</p>
|
Page generated in 0.0944 seconds