• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 212
  • 212
  • 158
  • 155
  • 150
  • 150
  • 106
  • 57
  • 56
  • 55
  • 53
  • 53
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Epigenetic Determinants of Altered Gene Expression in Schizophrenia: a Dissertation

Huang, Hsien-Sung 09 May 2008 (has links)
Schizophrenia is a neurodevelopmental disorder affecting 1% of the general population. Dysfunction of the prefrontal cortex (PFC) is associated with the etiology of schizophrenia. Moreover, a substantial deficit of GAD1mRNA in schizophrenic PFC has been reported by different groups. However, the underlying molecular mechanisms are still unclear. Interestingly, epigenetic factors such as histone modifications and DNA methylation could be involved in the pathogenesis of schizophrenia during the maturation of the PFC. In my work, I identified potential epigenetic changes in schizophrenic PFC and developmental changes of epigenetic marks in normal human PFC. Furthermore, mouse and neuronal precursor cell models were used to confirm and investigate the molecular mechanisms of the epigenetic changes in human PFC. My initial work examined whether chromatin immunoprecipitation can be applied to human postmortem brain. I used micrococcal nuclease (MNase)-digested chromatin instead of cross-linked and sonicated chromatin for further immunoprecipitation with specific anti-methyl histone antibodies. Surprisingly, the integrity of mono-nucleosomes was still maintained at least 30 hrs after death. Moreover, differences of histone methylation at different genomic loci were detectable and were preserved within a wide range of autolysis times and tissue pH values. Interestingly, MNase-treated chromatin is more efficient for subsequent immunoprecipitation than crosslinked and sonicated chromatin. During the second part of my dissertation work, I profiled histone methylation at GABAergic gene loci during human prefrontal development. Moreover, a microarray analysis was used to screen which histone methyltransferase (HMT) could be involved in histone methylation during human prefrontal development. Mixed-lineage leukemia 1 (MLL1), an HMT for methylation at histone H3 lysine 4 (H3K4), appears to be the best candidate after interpreting microarray results. Indeed, decreased methylation of histone H3 lysine 4 at a subset of GABAergic gene loci occurred in Mll1 mutant mice. Interestingly, clozapine, but not haloperidol, increased levels of trimethyl H3K4 (H3K4me3) and Mll1 occupancy at the GAD1 promoter. I profiled histone methylation and gene expression for GAD1 in schizophrenics and their matched controls. Interestingly, there are deficits of GAD1 mRNA levels and GAD1 H3K4me3 in female schizophrenics. Furthermore, I was also interested in whether the changes of GAD1 chromatin structure could contribute to cortical pathology in schizophrenics with GAD1 SNPs. Remarkably, homozygous risk alleles for schizophrenia at the 5’ end of the GAD1 gene are associated with a deficit of GAD1 mRNA levels together with decreased GAD1 H3K4me3 and increased GAD1H3K27me3 in schizophrenics. Finally, I shifted focus on whether DNA methylation at the GAD1 promoter could contribute to a deficit of GAD1 mRNA in schizophrenia. However, no reproducible techniques are available for extracting genomic DNA specifically from GABAergic neurons in human brain. Therefore, I used an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of active and silenced gene expression. The methylation frequencies of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined from two chromatin fractions (H3K4me3 and H3K27me3) separately. Consistently, the proximal promoter region of GAD1 is more resistant to methylation in comparison to intron 2 of GAD1 in either open or repressive chromatin fractions. Interestingly, overall higher levels of DNA methylation were seen in repressive chromatin than in open chromatin. Surprisingly, schizophrenic subjects showed a significant decrease of DNA methylation at the GAD1proximal promoter from repressive chromatin. Taken together, my work has advanced our knowledge of epigenetic mechanisms in human prefrontal development and the potential link to the etiology of schizophrenia. It could eventually provide a new approach for the treatment of schizophrenia, especially in the regulation of methylation at histone H3 lysine 4.
12

Conserved Features of Chromatin Remodeling Enzymes: A Dissertation

Boyer, Laurie A. 21 August 2000 (has links)
Chromatin structure plays an essential role in the regulation of many nuclear processes such as transcription, replication, recombination, and repair. It is generally accepted that chromatin remodeling is a prerequisite step in gene activation. Over recent years, large multisubunit enzymes that regulate the accessibility of nucleosomal DNA have emerged as key regulators of eukaryotic transcription. It seems likely that similar enzymes contribute to the efficiency of DNA replication, recombination, and repair. These chromatin remodeling complexes can be classified into two broad groups: (1) the ATP-dependent enzymes, which utilize the energy of ATP hydrolysis to increase the accessibility of nucleosomal DNA; and (2) histone modifying enzymes that phosphorylate, acetylate, methylate, ubiquitinate, or ADP-ribosylate the nucleosomal histones (for review see Kingston and Narlikar, 1999; Muchardt and Yaniv, 1999; Brown et al., 2000; Vignali et al., 2000; Strahl and Allis, 2000). The mechanism by which these two groups of large, multi-subunit enzymes function to alter chromatin structure is enigmatic. Studies suggest that ATP-dependent and histone acetyltransferase chromatin remodeling enzymes have widespread roles in gene expression and perform both independent and overlapping functions. Interestingly, although both groups of enzymes appear to be distinct, several features of these enzymes have been conserved from yeast to man. Thus, understanding the role of these similar features will be essential in order to elucidate the function of remodeling enzymes, their functional interrelationships, and may uncover the fundamental principals of chromatin remodeling. In this study, we use a combination of yeast molecular genetics and biochemistry to dissect out the function of individual parts of these chromatin remodeling machines and to understand how these large macromolecular assemblies are put together. In addition, we also investigate the mechanism by which the ATP-dependent enzymes exert their regulatory effects on chromatin structure. Structure/function analysis of Saccharomyces cerevisiaeSwi3p (conserved in SWI/SNF complexes across all eukaryotic phyla) reveals a unique scaffolding role for this protein as it is essential for assembly of SWI/SNF subunits. We have also characterized a novel motif that has homology to the Myb DNA binding domain, the SANT domain, and that is shared among transcriptional regulatory proteins implicated in chromatin remodeling. Mutational analysis of this domain in yeast Swi3p (SWI/SNF), Rsc8/Swh3p (RSC), and Ada2p (GCN5 HATs) reveals an essential function for the SANT domain in chromatin remodeling. Moreover, our studies suggest that this novel motif may be directly involved in mediating a functional interaction with chromatin components (i.e. histone amino terminal domains). We have also directly compared the activities of several members of the ATP-dependent chromatin remodeling enzymes. Surprisingly, we find that these enzymes utilize similar amounts of ATP to increase nucleosomal DNA accessibility. In as much, we show that changes in histone octamer comformation or composition is not a requirement or consequence of chromatin remodeling by SWI/SNF. Taken together, these data suggest a similar mechanism for ATP-utilizing chromatin remodeling enzymes in which disruption of histone-DNA contacts occur without consequence to the structure of the histone octamer. These data have striking implications for how we view the mechanism of chromatin remodeling.
13

Genetic Analysis of the Saccharomyces Cerevisiae Centromere-Binding Protein CP1: a Thesis

Masison, Daniel C. 01 March 1993 (has links)
CP1 is a sequence specific DNA-binding protein of the yeast Saccharomyces cerevisiae which recognizes the highly conserved centromere DNA element I (CDEI) of yeast centromeres. The gene encoding CP1, which was designated CEP1 for centromere protein 1, was cloned and sequenced. CEP1 encodes a highly acidic protein of molecular weight 39,400. CEP1 was mapped to a position 4.6 centiMorgans centromere distal to SUP4 on the right arm of chromosome X. Phenotypic analysis of cep1 mutants demonstrated that yeast strains lacking CP1 are viable but have a 35% increase in cell doubling time, a ninefold increase in the rate of mitotic chromosome loss, and are methionine auxotrophs. Detailed analysis of the mitotic chromosome-loss phenotype showed that the loss is primarily due to chromosome nondisjunction (2:0 segregation). During meiosis cep1 null mutants exhibited aberrant segregation of centromere containing plasmids, chromosome fragments, and chromosomes. The predominant missegregation event observed was precocious sister segregation. The mutants also displayed a nonrandom 20% decrease in spore viability. Missegregation of chromosomes accounted for some but not all of this decreased spore viability, the remainder of which is presumed to be related to the pleiotropic consequences of the cep1 mutation. Together with the observed mitotic missegregation phenotype the results are interpreted as suggesting that CP1 promotes sister chromatid-kinetochore adhesion. The following conclusions are based on my mutational analysis of CP1: (1) CP1 is normally present in functional excess, (2) the C-terminal 143 amino acids are sufficient for full CP1 function in chromosome segregation and methionine metabolism, and (3) while DNA binding is apparently necessary for function, DNA binding per se is not sufficient. All of the mutations which caused an observable phenotype affected both centromere function and methionine metabolism. In addition, a direct correlation was observed in the degree to which both phenotypes were affected by different mutations. None of the mutant proteins displayed trans-dominant effects in a wild type background; however, two nonfunctional DNA binding-competent mutants exerted a dominant negative effect on the ability of PHO4 to suppress cep1 methionine auxotrophy. The data are consistent with a model in which CP1 performs a similar function at centromeres and promoters.
14

A Genetic and Structural Analysis of P22 Lysozyme: A Thesis

Rennell, Dale 01 February 1988 (has links)
P22 lysozyme, encoded by gene 19, is an essential phage protein responsible for hydrolyzing the bacterial cell wall during lytic infection. P22 lysozyme is related to T4 lysozymein its mode of action, substrate specificities, and in its structure. Gene 19 was located on the phage genome, subcloned, and then sequenced. lysozyme was produced in large quantities and purified for biochemical characterization and for crystallograpic studies. Gene 19consists of 146 codons, and encodes a protein with a molecular weight of 16,117. Amber mutations were created in gene 19 by in vitro primer-directed mutagenesis. The mutations were crossed by homologous recombination onto the phage genome. The phages bearing the amber mutations in gene 19 were screened for the ability to grow on six different amber suppressor strains. Amino acid substitutions that resulted in nonfunctional or less functional lysozyme were determined. Of 60 possible amino acid substitutions at 11 different sites in P22 lysozyme, 20 are deleterious. The phage bearing amber mutations in gene 19that failed to grow on given suppressor strains were reverted and second site intragenic revertants were obtained. The mutations were sequenced. A substitution of serine for glutamine at residue 82 is compensated for by changing residue 46 from serine to leucine. This single change enables the phage to form a plaque at 300C but not at 400C. When the triple change asn42->lys; ser46->leu; and ser43->pro is present the lysozyme produced is no longer temperature sensitive. The crystal structure of P22 lysozyme is not yet solved. Assuming that the structures of T4 lysozyme and P22 lysozyme are similar, one can examine the positions of equivalent residues in the T4 lysozyme structure. The spatial arrangement of the residues changed by the secondary site mutations and the original substitution can then be visualized. The mutations discussed above all map far from the original mutation on the T4 three dimensional model. A substitution of leucine for tyrosine at position 22 is compensated for by the double mutation of arg18->ser and ser23->lys. When the equivalent residues are mapped on the T4 three dimensional model the changes map in close proximity to the original mutation.
15

Functional and Structural Dissection of the SWI/SNF Chromatin Remodeling Complex: A Dissertation

Yang, Xiaofang 08 May 2007 (has links)
The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent chromatin remodeling complexes. It consists of eleven stoichiometric subunits including Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic subunit of SWI/SNF, is evolutionally conserved from yeast to human cells. Genetic evidence suggests that SWI/SNF is required for the transcriptional regulation of a subset of genes, especially inducible genes. SWI/SNF can be recruited to target promotors by gene specific activators, and in some cases, SWI/SNF facilitates activator binding. Biochemical studies have demonstrated that purified SWI/SNF complex can hydrolyze ATP, and it can use the energy from ATP hydrolysis to generate superhelical torsion, mobilize mononucleosomes, enhance the accessibility of endonucleases to nucleosomal DNA, displace H2A/H2B dimers, induce dinucleosome and altosome formation, or evict nucleosomes. A human homolog of Swi2p/Snf2p, BRG1, is the catalytic subunit of the human SWI/SNF complex. Interestingly, isolated BRG1 alone is able to remodel a mononucleosome substrate. Importantly, mutations in mammalian SWI/SNF core subunits are implicated in tumorigenesis. Therefore, it remains interesting to characterize the role(s) of each subunit for SWI/SNF function. In this thesis project, I dissected SWI/SNF chromatin remodeling function by investigating the role of the SANT domain of the Swi3p subunit. Swi3p is one of the core components of SWI/SNF complex, and it contains an uncharacterized SANT domain that has been found in many chromatin regulatory proteins. Earlier studies suggested that the SANT domain of Ada2p may serve as the histone tail recognition module. For Swi3p, a small deletion of eleven amino acids from the SANT domain caused a growth phenotype similar to that of other swi/snf mutants. In chapter I, I have reviewed recent findings in the function of chromatin remodeling complexes and discuss the molecular mechanism of their action. In chapter II, I characterized the role of the SANT domain of Swi3p. I found that deletion of the SANT domain caused a defect in a genome-wide transcriptional profile, SWI/SNF recruitment, and more interestingly impairment of the SANT domain caused the dissociation of SWI/SNF into several subcomplexes: 1) Swi2p/Arp7p/Arp9p, 2) Swi3p/Swp73p/Snf6p, 3) Snf5p, and 4) Swi1p. Artificial tethering of SWI/SNF onto a LacZ reporter promoter failed to activate the reporter gene in the absence of the SANT domain, although Swi2p can be recruited to the LacZ promoter. We thus demonstrated that the Swi3p SANT domain is critical for Swi3p function and serves as a protein scaffold to integrate these subcomplexes into an intact SWI/SNF complex. In Chapter III, I first characterized the enzymatic activity of the subcomplexes, especially the minimal complex of Swi2p/Arp7p/Arp9p. We found that this minimal subcomplex is fully functional for chromatin remodeling in assays including cruciform formation, restriction enzyme accessibility in mononucleosomal and nucleosomal array substrates, and mononucleosome mobility shift. However, it is defective in ATP-dependent removal of H2A/H2B dimers. Moreover, we found that Swi3p and the N-terminal acidic domain of Swi3p strongly interact with GST-H2A and H2B but not GST-H3 or H4 tails. We purified a SWI/SNF mutant (SWI/SNF-Δ2N) that lacks 200 amino acids within the N-terminal acidic domain of Swi3p. Intriguingly, SWI/SNF-Δ2N failed to catalyze ATP-dependent dimer loss, although this mutant SWI/SNF contains all the subunits and has intact ATP-dependent activity in enhancing restriction enzyme accessibility. These data help to further understand the molecular mechanism of SWI/SNF, and show that H2A/H2B dimer loss is not an obligatory consequence of ATP-dependent DNA translocation, but requires the histone chaperone function of the Swi3p subunit. Based on these findings, we proposed a new model of the structural and functional organization of the SWI/SNF chromatin remodeling machinery: SWI/SNF contains at least four distinct modules that function at distinct stages of the chromatin remodeling process. 1) Swi1p and Snf5p modules directly interact with gene specific activators and function as the recruiter; 2) Swi2p/Arp7p/Arp9p generates energy from ATP hydrolysis and disrupts histone/DNA interactions; and 3) Swi3p/Swp73p/Snf6p may play dual roles by integrating each module into a large remodeling complex, as well as functioning as a histone H2A/H2B chaperone to remove dimers from remodeled nucleosomes. Chapter IV is a perspective from current work in this project. I first discuss the interest in further characterizing the essential role of Snf6p, based on its activation of LacZ reporter on its own. Using in vitro translated protein and co-IP studies, I tried to pinpoint the requirement of the SANT domain for SWI/SNF assembly. I found that Swi3p directly interacts with Swp73p, but not with other subunits. When Swi3p is first incubated with Swp73p, Swi3p also interacts with Snf6p, indicating that Swi3p indirectly interacts with Snf6p, therefore forming a subcomplex of Swi3p/Swp73p/Snf6p. This subcomplex can also be reconstituted using in vitro co-translation. Consistent with the TAP preparation of this subcomplex, partial deletion of the SANT domain of Swi3p does not affect the assembly of Swi3p/Swp73p/Snf6p in vitro. However, the assembly of SWI/SNF complex was not detected in the presence of eight essential in vitro translated subunits or from co-translation of all the subunits. I have discussed the interest in further characterizing the histone chaperone role of the Swi3p N-terminal acidic domain and the role of other core subunits of SWI/SNF such as Snf6p for transcriptional regulation.
16

The Human Rad52 Protein: a Correlation of Protein Function with Oligomeric state: a Dissertation

Lloyd, Janice A. 06 September 2002 (has links)
The regulation of protein function through oligomerization is a common theme in biological systems. In this work, I have focused on the effects of the oligomeric states of the human Rad52 protein on activities related to DNA binding. HsRad52, a member of the RAD52 epistasis group, is thought to play an important and as yet undefined role in homologous recombination. HsRad52 preferentially binds to ssDNA over dsDNA and stimulates HsRad51-mediated strand exchange (Benson et al., 1998). In either the presence or absence of DNA, HsRad52 has been observed to form both 10 nm ring-like structures as well as higher order oligomers consisting of multiple 10 nm rings (Van Dyck et al., 1998; Van Dyck et al., 1999). Earlier protein-protein interaction studies mapped the domain responsible for HsRad52 self-association in the N-terminus (residues 85-159) (Shen et al., 1996). Data presented here identifies a novel self-association domain in the C-terminus of HsRad52 that is responsible for the formation of higher order oligomers. VanDyck et al. observed DNA ending binding complexes consisting of multiple rings (Van Dyck et al., 1999). They proposed that these higher order oligomers may be functionally relevant. In this work, we demonstrate that DNA binding depends on neither ring shaped oligomers nor higher order oligomers but that activities of HsRad52 that require simultaneous interaction with more than one DNA molecule depend on the formation of higher order oligomers consisting of multiple HsRad52 rings. Early studies of HsRad52 proposed that the DNA binding domain resides in the highly conserved N-terminus of the protein (Park et al., 1996). A series of studies using truncation mutants of HsRad52 have provided evidence that supports this hypothesis. For example, we demonstrated that a truncation mutant containing only the first 85 residues of the protein is still able to bind DNA (Lloyd, submitted 2002). In this study, we demonstrate that aromatic (Y65, F79 and Y81) and hydrophobic (L43, I52 and I66) residues within the N-terminus contribute to DNA binding by either directly contacting the DNA or by stabilizing the structure of the protein. In summary, through the work presented in this dissertation, we have determined that the formation of 10 nm rings is mediated by a self-association domain in the N-terminus and that the formation of higher order oligomers consisting of multiple HsRad52 rings is mediated by an additional self-association domain in the C-terminus. We have correlated the oligomeric properties of HsRad52 with its biochemical functions related to DNA binding. Additionally, we have demonstrated that aromatic and hydrophobic residues contribute to DNA binding. Further studies will differentiate between the contribution of these residues to the DNA binding by stabilizing the overall structure of the protein versus making specific DNA contacts. Additional studies will also address how the oligomeric state of HsRad52 contributes to its role in HsRad51-mediated strand exchange.
17

In Vitro and in vivo Studies of Murine Polytropic Retrovirus Infections: a Dissertation

Loiler, Scott A. 01 September 2000 (has links)
Murine leukemia viruses (MuLV) are retroviruses that play important roles in the study of oncogenes, integration, transcriptional regulation and gene therapy. Mink cell focus-inducing (MCF) viruses are polytropic MuLVs that by definition infect cells from a wide variety of species. Their ability to infect human cells and their utility as gene therapy vectors were not well characterized. To address this issue, primary and immortalized human cells were tested for their ability to be infected by MCF packaged defective vectors as well as replication competent MCF virus. A new packaging cell line, called MPAC, was created to package defective retroviral vectors in virus particles with envelope proteins derived from a Moloney mink cell focus-inducing (Mo-MCF) virus. The cellular tropism of MPAC-packaged retroviral vectors was the same as replication competent MCF viruses. Testing various established cell lines showed some human cell lines could be infected with MPAC-packaged vectors while others cannot. In addition, I show that some human cells fully support MCF virus replication while others either partially or fully restrict MCF virus replication. This indicates that some human cells express a protein on their surface that acts as a receptor for MCF viruses and allows MCF viral entry. In addition, the human cells that express a receptor for MCF viral entry did not show any further block to viral replication. An important determinant in the pathogenic phenotype of MCF 247 has been mapped to the enhancer region of the retroviral long terminal repeat (LTR). Recombination of endogenous genetic elements with the 3' portion of envoccurs and incorporates unique LTR sequences. Most strongly pathogenic MCF viruses have a duplication of the enhancer element found in the LTR. AKR mice are an inbred strain of mice that develop spontaneous T-cell lymphomas between 6 and 12 months of age. 12-25 % of MCF induced early lymphomas of AKR mice show MCF viral integration's near c-myc in an opposite transcriptional orientation. A replication competent MCF virus containing a bacterial amber suppressor tRNA gene (supF) was used to investigate the changes in the enhancer region following injection of MCF containing one enhancer in the LTR. Newborn AKR mice were injected with the supF tagged replication competent virus and observed for signs of leukemia development (ruffled fur, lethargy, and tumor development). When these signs were detected, the animals were sacrificed and DNA was prepared from the isolated tumors. Thirty-one tumors DNA were analyzed for the presence of supF tagged virus and rearrangement of the c-myc locus. Nine supF tagged proviral LTRs integrated near c-myc from four animals were PCR amplified, sequenced, and/or cloned. All of the enhancer elements analyzed were derived from proviruses that integrated in a reverse orientation with respect to c-myc locus. Two of the isolated enhancer elements contained only a few base changes whereas the majority contained duplications of different sizes that encompassed different transcription factor binding sites. The duplicated enhancer regions contained duplications from 82-134 bp in length. One tumor contained a proviral enhancer with only 5 bp changes relative to the injected virus. This suggests that the enhancers need only a few specific base changes relative to the injected virus to accelerate leukemogenesis. The other three tumors contained proviral enhancers with various size duplications and additional transcription factor binding sites. These data suggest that the injected virus is not pathogenic unless the enhancer region is altered. One proviral integration site encompassing a duplicated enhancer region and 139 bp of the c-myc gene locus was PCR amplified, cloned and sequenced. A search of the current transcription factor database (Transfac 3.3) showed no known transcription factor binding site sequences were created at the junction of the enhancer duplications. The common motif of LVb, core NF-1, and GRE transcription factor binding sites, described by Golemis at al (57), was conserved throughout the isolated enhancers. Most of the enhancer elements contained additional NF-кB and/or GRE sites in close proximity to the conserved LVb-core region. These results support the hypothesis that additional NF-кB and/or GRE binding sites cooperatively interact with the conserved GRE-NF-1-LVb-core motif in c-myc induced leukemogenesis. In addition, two unique families of enhancer duplications were identified. The two families contained enhancers isolated from different tumors that displayed sequence homology and transcription factor binding site organization unique to each group.
18

Genetic and Biochemical Analysis of the Activation Mechanism of the Saccharomyces Cerevisiae Pheromone Receptor

Bukusoglu, Gul H. 28 January 1998 (has links)
Activation mechanism of the α-factor pheromone receptor of Saccharomyces cerevisiae was analyzed using biochemical and genetic techniques. An in vitro partial proteolysis assay was developed to determine the conformational change of the receptor that occurs upon binding of agonist. The activation specific cleavages were established by comparing cleavage products with antagonist versus agonist occupied receptor. Of the changes in peptide pattern that were revealed by trypsinization, the fragment resulting from the exposure of the third loop to the protease was found to be agonist specific and to be G-protein independent. A low-affinity binding receptor mutant was isolated which failed to undergo this agonist induced conformational change. Four intra-allelic suppressors of this receptor mutant were isolated and all were mapped to the ends of transmembrane helices 4, 5, 6 and 7; all were found to be replacements of non-polar residues by polar ones. The role of the suppressor mutations in conformational change was analyzed.
19

Structural Association of XIST RNA with Inactive Chromosomes in Somatic Cells : a Key Step in the Process that Establishes and Faithfully Maintains X-inactivation

Clemson, Christine Moulton 01 May 1998 (has links)
The XIST gene is implicated in X-chromosome inactivation, yet the RNA contains no apparent open reading frame. An accumulation of XIST RNA is observed near its site of transcription, the inactive X chromosome (Xi). A series of molecular cytogenetic studies comparing properties of XIST RNA to other protein coding RNAs, support a critical distinction for XIST RNA; XIST RNA does not concentrate at Xi simply because it is transcribed and processed there. Most notably, morphometric and 3-D analysis reveals that XIST RNA and Xi are coincident in 2-D and 3-D space; hence the XIST RNA essentially paints Xi. Several results indicate that the XIST RNA accumulation has two components, a minor one associated with transcription and processing, and a spliced major component, which stably associates with Xi. Upon transcriptional inhibition the major spliced component remains in the nucleus and often encircles the extra-prominent heterochromatic Barr body. The continually transcribed XIST gene and its poly-adenylated RNA consistently localize to a nuclear region devoid of splicing factor/poly A RNA rich domains. XIST RNA remains with the nuclear matrix fraction after removal of chromosomal DNA. XIST RNA is released from its association with Xi during mitosis, but shows a unique highly particulate distribution. Collective results indicate that XIST RNA may be an architectural element of the interphase chromosome territory, possibly a component of non-chromatin nuclear structure that specifically associates with Xi. XIST RNA is a novel nuclear RNA which potentially provides a specific precedent for RNA involvement in nuclear structure and cis-limited gene regulation via higher-order chromatin packaging.
20

Transcriptional Regulation of a Human H4 Histone Gene is Mediated by Multiple Elements Interacting with Similar Transcription Factors: A Dissertation

Last, Thomas J 01 May 1998 (has links)
Synthesis of histone proteins occurs largely during the S phase of the cell cycle and coincides with DNA replication to provide adequate amounts of histones necessary to properly package newly replicated DNA. Controlling transcription from cell cycle dependent and proliferation specific genes, including histone H4, is an important level of regulation in the overall governance of the cell growth process. Coordination of histone gene transcription results from the cumulative effects of cell signaling pathways, dynamic chromatin structure and multiple transcription factor interactions. The research of this dissertation focused on the characterization and identification of transcription factors interacting on the human histone H4 gene FO108. I also focused on the elucidation of regulatory elements within the histone coding region. Our results suggest a possible mechanism by which a transcription factor facilitates reorganization of histone gene chromatin structure. The histone promoter region between -418 nt and -215 nt, Site III, was previously identified as both a positive and negative cis-regulatory element for transcription. Results of in vitroanalyses presented in this dissertation identified multiple transcription factors interacting at Site III. These factors include H4UA-1/YY1, AP-2, AP-2 like factor and distal factor (NF-1 like factor). Transient transfection experiments show that Site III does not confer significant influence on transcription; however, there may exist a physiological role for Site III which would not be detected in these assay systems. We analyzed the histone H4 gene sequences for additional transcription factor binding motifs and identified several putative YY1 binding sites. Using electrophoretic mobility shift assays (EMSA), we found that Site IV, Site I and two elements within the histone H4 coding region are capable of interacting with YY1. In transient transfection experiments using reporter constructs containing either Site III or one of the coding region elements as potential promoter regulatory elements, and an expression vector encoding YY1, we observed levels of expression up to 2.7 fold higher than from the reporters lacking these elements. Therefore, YY1 appears to interact at multiple regulatory sites of the histone gene and can influence transcription through these elements. Prior to this study, the role of the coding region in histone gene expression was not known. To determine if the coding region is involved in regulating transcription, I constructed and tested a series of heterologous reporter constructs containing various sequences of the histone coding region. Results from these experiments demonstrated that the histone coding region contains three repressor elements. Extensive in vitro analysis indicated that the three repressor elements interact with the repressor CDP/cut. Further analysis showed that CDP/cut interactions with the repressor elements are cell cycle regulated and proliferation specific. CDP/cut interactions increase during the cell cycle when histone transcription decreases. These observations are consistent with the hypothesis that CDP/cutis a cell cycle regulated repressor factor which influences transcription of the histone H4 gene as such. The proximal promoter region of the histone H4 gene between -70 nt and +190 nt is devoid of normal nucleosome structure. This same region contains multiple CDP/cut binding sites. We hypothesized that CDP/cut is involved with chromatin remodeling of the histone gene. DNase I footprinting and EMSA results show purified recombinant CDP/cut interacts specifically with the histone promoter reconstituted into nucleosome cores. Thus, CDP/cutmay facilitate the organization of chromatin of the histone gene. In conclusion, the research presented in this dissertation supports the hypothesis that expression from the human histone H4 gene FO108 is regulated by multiple cis-regulatory elements which interact with several proteins. CDP/cut interacts with Site II, the three repressor elements in the histone coding region and at Distal Site I. YY1 interacts at Site IV, Site III, Site I, and twice in the coding region. ATF/CREB interacts with Site IV and Site I. Distal factor interacts with Site III and within the histone coding region. IRF 2 interacts with Site II and Distal Site I. Thus, histone gene expression is probably regulated by transcription factors CDP/cut, YY1, IRF 2 and ATF/CREB interacting with multiple regulatory elements dispersed throughout its promoter and the coding region. Cell cycle regulation of these transcription factors may contribute to cell cycle dependent expression of the histone gene.

Page generated in 0.0798 seconds