Spelling suggestions: "subject:"1genetic phenomena"" "subject:"1genetic henomena""
191 |
Dissecting Small RNA Loading Pathway in <em>Drosophila melanogaster</em>: A DissertationDu, Tingting 28 January 2008 (has links)
In the preceding chapters, I have discussed my doctoral research on studying the siRNA loading pathway in Drosophila using both biochemical and genetic approaches. We established a gel shift system to identify the intermediate complexes formed during siRNA loading. We detected at least three complexes, named complex B, RISC loading complex (RLC) and RISC. Using kinetic modeling, we determined that the siRNA enters complex B and RLC early during assembly when it remains double-stranded, and then matures in RISC to generate Argonaute bearing only the single-stranded guide. We further characterized the three complexes. We showed that complex B comprises Dcr-1 and Loqs, while both RLC and RISC contain Dcr-2 and R2D2. Our study suggests that the Dcr-2/R2D2 heterodimer plays a central role in RISC assembly. We observed that Dcr-1/Loqs, which function together to process pre-miRNA into mature miRNA, were also involved in siRNA loading. This was surprising, because it has been proposed that the RNAi pathway and miRNA pathway are separate and parallel, with each using a unique set of proteins to produce small RNAs, to assemble functional RNA-guided enzyme complexes, and to regulate target mRNAs. We further examined the molecular function of Dcr-1/Loqs in RNAi pathway. Our data suggest that, in vivo and in vitro, the Dcr-1/Loqs complex binds to siRNA. In vitro, the binding of the Dcr-1/Loqs complex to siRNA is the earliest detectable step in siRNA-triggered Ago2-RISC assembly. Futhermore, the binding of Dcr-1/Loqs to siRNA appears to facilitate dsRNA dicing by Dcr-2/R2D2, because the dicing activity is much lower in loqslysate than in wild type.
Long inverted repeat (IR) triggered white silencing in fly eyes is an example of endogenous RNAi. Consistent with our finding that Dcr-1/Loqs function to load siRNA, less white siRNA accumulates in loqs mutant eyes compared to wild type. As a result, loqs mutants are partially defective in IR trigged whitesilencing. Our data suggest considerable functional and genetic overlap between the miRNA and siRNA pathways, with the two sharing key components previously thought to be confined to just one of the two pathways.
Based on our study on siRNA loading pathway, we also elucidated the molecular function of Armitage (Armi) protein in RNAi. We showed that armi is required for RNAi. Lysates from armi mutant ovaries are defective for RNAi in vitro. Native gel analysis of protein-siRNA complexes suggests that armi mutants support early steps in the RNAi pathway, i.e., the formation of complex B and RLC, but are defective in the production of the RISC.
|
192 |
The Coupling Between Folding, Zinc Binding, and Disulfide Bond Status of Human Cu, Zn Superoxide Dismutase: A DissertationKayatekin, Can 15 June 2010 (has links)
Cu, Zn superoxide dismutase (SOD1) is a dimeric, β-sandwich, metalloenzyme responsible for the dismutation of superoxide. Mutations covering nearly 50% of the amino acid sequence of SOD1 have been found to acquire a toxic gain-of-function leading to amyotrophic lateral sclerosis. A hallmark of this disease is the presence of insoluble aggregates containing SOD1 found in the brain and spinal cord. While it is unclear how these aggregates or smaller, precursor oligomeric species may be the source of the toxicity, mutations leading to increased populations of unstable, partially folded species along the folding pathway of SOD1 may be responsible for seeding and propagating aggregation.
In an effort to determine the responsible species, we have systematically characterized the stability and folding kinetics of five well studied ALS variants: A4V, L38V, G93A, L106V and S134N. The effect of the amino acid substitutions was determined on a variety of different constructs characterizing the various post-translational maturation steps of SOD1: folding, disulfide bond formation and Zn binding. Zn was found to bind progressively tighter along the folding pathway of SOD1, minimizing populations of monomeric species. In contrast, ALS variants were found to have the greatest perturbation in the equilibrium populations of the folded and unfolded state for the most immature, disulfide-reduced metal-free SOD1. In this species, at physiological temperature, four out of five ALS variants were >50% unfolded.
Finally the energetic barriers in the folding and unfolding reaction were studied to investigate the unusually slow folding of SOD1. These results reveal that both unfolding and refolding are dominated by enthalpic barriers which may be explained by the desolvation of the chain and provide insights into the role of sequence in governing the folding pathway and rate.
|
193 |
Investigating Age-Dependent Arthropathy in a Circadian Mutant Mouse Model: A DissertationYu, Elizabeth A. 09 June 2011 (has links)
Ectopic calcification can cause pain and limit mobility. Studies suggest that circadian genes may play a role in the calcification process. Core circadian genes Clock, Npas2, and Bmal1 are transcription factors that form CLOCK:BMAL1 or NPAS2:BMAL1 transactivator complexes that drive the rhythmic expression of circadian oscillator genes and output genes. Circadian oscillator genes Period1-3 and Cryptochrome1-2 encode proteins that form transcription repressor complexes that feedback to inhibit CLOCK/NPAS2:BMAL1 activity, thus completing the feedback loop that is the basis of the molecular circadian clockwork. Arrhythmic Bmal1-/- mice exhibit site-specific, age-dependent arthropathy. While studying the circadian phenotype of Clock-/-;Npas2m/m double mutant mice, we discovered that these double mutant mice develop site-specific arthropathy similar to the arthropathy described in Bmal1-/- mice. Based on the circadian clockwork mechanism, we hypothesized that CLOCK/NPAS2:BMAL1 transactivator complexes drive the expression of a gene (or genes) that prevents age-dependent arthropathy. To investigate Clock-/-;Npas2m/m double mutant mouse arthropathy, we evaluated mutant mice using X-ray, micro-computed tomography, and histology, and found that Clock-/-;Npas2m/m double mutant mice exhibit age-dependent, site-specific arthropathy that phenocopies that of Bmal1-/- mice. The costosternal junction and calcaneal tendon are most prominently affected, in that calcification of those tissues is detectable as early as 4-5 weeks and 11-12 weeks, respectively. The arthropathic lesions in these tissues consist of calcium phosphate vii deposits, and in Bmal1-/- costosternal junction calcifications, the deposits contain calcium pyrophosphate dihydrate crystals. Mechanical stress, disregulation of centrally-regulated circadian rhythms, and systemic serum mineral imbalances likely do not contribute to this pathology. In vitro micromass cultures generated from Clock-/-;Npas2m/m double mutant mouse embryonic fibroblasts do not exhibit irregular chondrocyte differentiation compared to wild-type cultures, suggesting that chondrocyte cell-autonomous mechanisms are insufficient to induce this arthropathy. Analysis of Clock-/-;Npas2m/m double mutant intersternebral tissue RNA did not reveal significant changes in chondrocyte or calcification-related gene expression. Histological stains showed an absence of osteoblasts and osteoclasts around costosternal junction calcifications, suggesting that these cell types are not contributing to this pathology. Instead, chondrocytes are localized to the costosternal junction but there were no significant changes in the distribution of chondrocyte markers in this tissue, as evaluated by immunohistochemistry. These findings suggest that Clock or Npas2, and Bmal1, regulate ectopic calcification through a combination of systemic and local factors, and that the cells affected by Clock and Npas2, or Bmal1, disruption are a subset of the cells distributed in specific tissues that develop age-dependent arthropathy. The significance of these findings is that “circadian genes” play a role in the regulation of ectopic calcification in a non-oscillator capacity. Understanding this new mechanism by which ectopic calcification is controlled could lead to novel approaches for the treatment of some human calcification diseases.
|
194 |
Roles of Cellular RNA-Dependent RNA Polymerases in Endogenous Small RNA Pathways in Caenorhabditis elegans: A DissertationVasale, Jessica J. 14 June 2010 (has links)
The RNA interference (RNAi) pathway in Caenorhabditis elegans is a two-step, small RNA-mediated silencing pathway. Unlike in other organisms, Dicer processing of double-stranded RNA into small interfering (si) RNAs is not sufficient in worms to induce gene silencing. The activity of cellular RNA-dependent RNA polymerase (RdRP) is necessary to synthesize a secondary pool of siRNAs, which interact with a unique class of Argonaute proteins to form the functional effector complexes that mediate silencing. The aims of this thesis were to: 1) characterize the role of RdRP family members in endogenous small RNA biogenesis; 2) identify the Argonaute proteins that interact with RdRP-dependent small RNAs; and 3) investigate the biological function of RdRP-dependent small RNA pathways in C. elegans.
In this thesis, I describe genetic, deep sequencing, and molecular studies, which identify 22G-RNAs as the most abundant class of endogenous small RNA in C. elegans. The 22G-RNAs resemble RdRP-dependent secondary siRNAs produced during exogenous RNAi, in that they possess a triphosphorylated 5’ guanine residue and exhibit a remarkable strand bias at target loci. Indeed, I show that 22G-RNAs are dependent on the activity of the RdRPs RRF-1 and EGO-1 and function in multiple distinct endogenous small RNA pathways. Interestingly, I have found that RRF-1 and EGO-1 function redundantly in the germline to generate 22G-RNAs that are dependent on and interact with members of an expanded family of worm-specific Argonaute (WAGO) proteins. The WAGO/22G-RNA pathway appears to be a transcriptome surveillance pathway that silences coding genes, pseudogenes, transposons, and non-annotated, or cryptic, transcripts. In contrast, I have found that EGO-1 alone is required for the biogenesis of a distinct class of 22G-RNAs that interact with the Argonaute CSR-1. Surprisingly, the CSR-1/22G-RNA pathway does not appear to silence its targets transcripts. Instead, the CSR-1/22G-RNA pathway is essential for the proper assembly of holocentric kinetochores and chromosome segregation.
Lastly, I show that a third endogenous small RNA pathway, the ERI pathway, is a two-step silencing pathway that requires the sequential activity of distinct RdRPs and Argonautes. In the first step of this pathway, the RdRP, RRF- 3, is required for the biogenesis of 26G-RNAs that associate with the Argonaute, ERGO-1. In the second step, RRF-1 and EGO-1 generate 22G-RNAs that associate with the WAGO Argonautes.
This work demonstrates how several C. elegans small RNAs pathways utilize RdRPs to generate abundant populations of small RNAs. These distinct categories of small RNAs function together with specific Argonaute proteins to affect gene expression, to play essential roles in development, and in the maintenance of genome and transcriptome integrity.
|
195 |
Co– and Post–Translational N–Linked Glycosylation of Cardiac Potassium Channel Subunits: A DissertationBas, Tuba 03 June 2010 (has links)
KCNE1 (E1) peptide is the founding member of the KCNE family (1-5), which is a class of type I transmembrane ß-subunits. KCNE1 peptides assemble with and modulate the gating, ion conducting properties and pharmacology of a variety of voltage-gated K+ channel a-subunits, including KCNQ1 (Q1). Mutations that interfere with the function of either E1 and/or Q1 and disrupt the assembly and trafficking of KCNE1- KCNQ1 channel complexes give rise to diseases such as Romano-Ward (RW) and Jervell Lange Nielsen Syndrome (JLNS), two different forms of Long QT Syndrome (LQTS).
Using enzymatic deglycosylation assays, immunofluorescence techniques and quantitative cell surface labeling, we showed that KCNE1 peptides are retained in the early stages of the secretory pathway as immaturely N-linked glycosylated proteins. KCNE1 co-assembly with KCNQ1 leads to E1 progression through the secretory pathway and glycan maturation, resulting in cell surface expression.
N-linked glycosylation of some membrane proteins is critical for proper folding, co-assembly and subsequent trafficking through the biosynthetic pathway. Previous studies have shown that genetic mutations that disrupt one of the two N-linked glycosylation sites on KCNE family members lead to LQTS (T7I, KCNE1 and T8A, KCNE2) (Schulze-Bahr et al., 1997; Sesti et al., 2000a; Park et al., 2003). Having confirmed that KCNE1 proteins acquire N-linked glycans, we examined the kinetics and efficiency of N-linked glycan addition to KCNE1. We showed that KCNE1 has two distinct N-linked glycosylation sites. The N-terminal sequon is a traditional co-translational site. The internal sequon (which is only ~ 20 residues away from the N-terminal sequon) acquires N-linked glycans primarily after protein synthesis (post-translationally). Surprisingly, mutations that prevent N-glycosylation at the cotranslational site also reduce the glycosylation efficiency of post-translational glycosylation at the internal sequon, resulting in a large population of unglycosylated KCNE1 peptides that are retained in the early stages of the secretory pathway and do not reach the cell surface with their cognate K+ channel. We showed that KCNE1 post-translational N-glycosylation in the endoplasmic reticulum is a cellular mechanism that ensures E1 proteins acquire the maximal number of glycans needed for proper channel assembly and trafficking. Our findings provide a new biogenic mechanism for human disease by showing that the JLNS mutation, T7I, not only inhibits glycosylation of the N-terminal sequon, but also indirectly prevents the glycosylation of the internal sequon, giving rise to a large population of assembly incompetent hypoglycosylated KCNE1 peptides.
To further investigate the two N-linked glycosylation sites on KCNE1, we generated structure-function deletion scans of KCNE1 and performed positional glycosylation scanning mutagenesis. We examined the glycosylation pattern of glycosylation mutants in an effort to define the glycosylation window important for proper KCNE1 assembly and trafficking. Our findings suggested a nine amino acid periodicity to serve as a desirable glycosylation site and a better substrate for N-glycosylation.
Appendix II shows work on the characterization of the C-terminally HA-tagged KCNE1 protein, which was used throughout the experiments presented in Chapter II, Chapter III and Chapter IV. Analysis of the C-terminally HA-tagged KCNE1 protein revealed that in heterologous expression systems KCNE1 had an internal translational start site, a methionine at position 27. A proteolytic cleavage site was also identified at the arginine cluster spanning residues 32 through 38 bearing the two known Long QT mutations (R32H and R36H) (Splawski et al., 2000; Napolitano et al., 2005).
My work in Professor Craig C. Mello’s lab during the first four years of my graduate study is presented in Appendix I. The highly conserved Wnt/Wingless glycoproteins regulate many aspects of animal development. Wnt signaling specifies endoderm fate by controlling the fate of EMS blastomere daughters in 4-cell stage Caenorhabditis elegans embryos. A suppressor genetic screen was performed using two temperature sensitive alleles of mom-2/Wnt to identify additional regulators of the Wnt/Wingless signaling pathway during C. elegans endoderm specification. Five intragenic suppressors and three extragenic suppressors of mom-2/Wnt embryonic lethality were identified. We cloned ifg-1, eIF4G homologue, as one of the extragenic suppressors suggesting an intriguing connection between the Wnt signaling pathway and the translational machinery.
|
196 |
Structural and Functional Studies of Proteins Involved in Antigen Processing: A DissertationNguyen, Tina T. 31 August 2010 (has links)
This thesis is comprised of studies of proteins involved in class I and class II major histocompatibility complex (MHC) antigen procressing. In class I MHC processing, structural and functional studies were conducted of an aminopeptidase, ERAP1, that mediates the final step in antigen processing to understand how it is particularly suitable for cleavage of antigenic peptides for class I MHC presentation. In the class II MHC antigen presentation pathway, structural studies were conducted to characterize a fluorogenic peptide that can be used to understand peptide loading events in vivo and in real time. Also structural studies of class II MHC and peptide complexes were conducted to understand the nature of an unique C-terminal secondary structure element exhibited by an HIV derived peptide in the peptide binding groove of class II MHC. The studies discussed in this thesis provide insights into the proteins involved in the class I and class II MHC antigen presentation pathway.
The endoplasmic reticulum (ER) aminopeptidase, ERAP1, is a 941 amino acid member of the M1 family of zinc metalloaminopeptidases. Unlike other aminopeptidases, ERAP1 has a length and C-terminal preference for its substrates. Interestingly, ERAP1 has been shown to trim antigenic peptides to lengths of 8 or 9 amino acids long. This length matches the length required to bind into the peptide binding groove of class I MHC molecules. In addition, ERAP1 is upregulated in the ER of cells treated with interferon gamma (IFN-γ). Knock-down of ERAP1 by siRNA results in less overall antigenic presentation during IFN-γ treatment, although the knock-down does not affect all class I MHC epitopes equally. Knock-out studies show that ERAP1 effects the antigen repertoire at the cell surface. These and other data implicate ERAP1 as an important player in class I MHC antigen presentation. A chapter of this thesis will describe the crystallographic work describing the structures of ERAP1 with an aminopeptidase inhibitor, bestatin, and ERAP1 without an inhibitor that suggest possible peptide binding site in ERAP1 that will allow it to generate suitable substrates for a subset of class I MHC alleles.
Class II MHC plays a key role in the immune response by presenting antigenic peptides on CD4+ cytotoxic cell surfaces for T-cell response. The binding of peptides onto the MHC is an important step in creating an immune response. Structures of peptide bound MHC class II show conserved side chain binding pockets within the overall peptide-binding groove. In HLA-DR1, a common human class II MHC, the P1 pocket shows a preference for large hydrophobic side chains. Development of environmentally sensitive peptide analogs, that can bind into the class II MHC the same way as native peptides, can assist in visualizing the antigen binding process. A chapter in this thesis describes the crystallographic work showing that (4-DAPA)-HA can be used to study antigen-presenting processes in a cell by visualizing the changes in fluorescence of the synthesized peptide upon antigen loading.
Crystallographic analysis of MHC class II, HLA-DR1, in complex with HIV gag-derived peptide, GagP16(PEVIPMFSALSEGATP), and superantigen, SEC3- 3B2, reveals the conventional polyproline conformation up to MHC binding pocket residue, P9, while the C-terminus of GagP16 adopts an unusual β- hairpin loop structure. Additionally, interactions between the leucine at P8 (LeuP8) and other residues on the loop such as ThrP16 and AlaP14 of the hairpin loop, was observed. Importantly, GagP16 requires the last 4 amino acids (P13-P16), which is part of the hairpin loop, for T-cell recognition. Understanding what dictates the C-terminal hairpin loop and the interaction motif of HLA-DR1/GagP16 complex with its TCR will provide insights on why it is important for T cell activation. A chapter in this thesis discusses the structural investigation conducted to understand the determinants of the loop at the C-terminus of GagP16 using designed peptides. It will also discuss work involving HLA-DR1 with the T cell receptor, AC25, that was cloned from T cells that are specific to HLA-DR1 in complex with the GagP16 peptide.
|
197 |
Role of the Yeast Ste20 Protein Kinase Ortholog Map4k4 in Adipose Tissue Function: A DissertationGuntur, Kalyani V. P. 10 February 2011 (has links)
Obesity has increased globally in epidemic proportions and as have the associated disorders. Insulin resistance that could further lead to type 2 diabetes is a major obesity associated dysfunction. Studies using insulin resistant mouse models and observations from human subjects exhibiting insulin resistance provide evidence for ectopic lipid deposition in organs like liver, muscle and heart as one of the major risk factors for developing insulin resistance. These observations suggest that deregulated adipose function to sequester and store excess energy as fat, could lead to insulin resistance. Furthermore, several studies have demonstrated adipose tissue dysfunction leading to inflammation and related syndromes. Interestingly, a mouse model with transgenic expression of glucose transporter in the adipose tissue exhibited improved glucose tolerance and increased insulin sensitivity despite development of obesity, upon high fat feeding. Thus mechanisms that improve adipose function could alleviate insulin resistance and associated diseases.
Mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) was identified in our laboratory as a negative regulator of adipocyte function. Interestingly, siRNA mediated knockdown of MAP4K4 promoted PPARγ protein expression. Additionally, silencing of MAP4K4 increased adipocyte triglyceride content. Because MAP4K4 is a negative regulator of PPARγ expression and adipocyte function, understanding the mechanism by which MAP4K4 regulates PPARγ expression is of interest. Thus, for the first part of this thesis, I characterized the signaling pathways utilized by MAP4K4 to regulate PPARγ expression in cultured adipocytes. Here I show that MAP4K4 regulates PPARγ expression through regulation of its protein translation. siRNA mediated MAP4K4 gene silencing stimulated PPARγ protein synthesis without changing its mRNA transcription or its protein degradation. This increase in PPARγ protein translation was due to an increase in the activity of mammalian target of rapamycin (mTOR). The increase in PPARγ protein expression mediated by mTOR activation was a specific effect of the 4E-BP1 phosphorylation that leads to its inactivation and was not a general increase in mTOR activity towards all of its substrates. Finally, adenovirus mediated over expression of MAP4K4 inhibited mTOR activation, and suppressed PPARγ protein translation.
For the second part of this thesis, I assessed the role of MAP4K4 in adipocytes in vivo. To accomplish this, a lentivirus mediated shRNA construct was generated to attenuate MAP4K4 expression selectively in the mouse adipose tissue. First we demonstrate that the MAP4K4 shRNA construct is able to efficiently silence the expression of MAP4K4 in vitro when co-expressed with Cre recombinase. Furthermore, we show that following modification of the lentiviral conditional vector that was introduced into a mouse embryo at one cell stage, and crossing the resulting founders with aP2-Cre mice, adipose tissue specific MAP4K4 gene silencing was achieved. Moreover, shRNA mediated gene silencing is a faster and an inexpensive means of achieving tissue specific gene knockdown relative to the available traditional gene knockout approaches.
Utilizing these adipose specific MAP4K4 gene knockdown mice, I reveal that MAP4K4 silencing enhanced fat mass as well as PPARγ expression significantly. This is accompanied by improved whole body insulin sensitivity. Furthermore, when challenged with high fat diet, adipose-specific MAP4K4 silenced mice exhibit enhanced adiposity with decreased lean mass. Moreover, adipocyte cell size and triglyceride content are significantly increased. Interestingly, despite increased adiposity, hepatic insulin sensitivity is significantly improved leading to decreased glucose output. Thus MAP4K4 is an important regulator of adipocyte function that mediates whole body glucose homeostasis, through a mechanism that is yet to be identified.
|
198 |
Regulation of Runx Proteins in Human Cancers: A DissertationPande, Sandhya 20 July 2011 (has links)
Runt related transcription factors (Runx) play an important role in mammalian development by regulating the expression of key genes involved in cell proliferation, differentiation and growth. The work described in this thesis details the mechanisms by which the activity of two members of this family are regulated in human cells. Chapter One provides a brief introduction of Runx transcription factors.
Chapter Two describes the regulation of Runx2 protein by the PI3 kinase/Akt pathway in human breast cancer cells. The PI3 kinase/Akt pathway is one of the major signal transduction pathways through which growth factors influence cell proliferation and survival. It is also one of the most frequently dysregulated pathways in human cancers. We identify Runx2 protein, a key regulator of breast cancer invasion as a novel substrate of Akt kinase and map residues of Runx2 that are phosphorylated by Akt in breast cancer cells. Our results show that phosphorylation by Akt increases the binding of Runx2 protein to its target gene promoters and we identify the phosphorylation events that enhance DNA binding of Runx2. Our work establishes Runx2 protein as a critical effecter downstream of Akt that regulates breast cancer invasion.
In Chapter Three we describe the subnuclear localization of the tumor suppressor protein Runx3 during interphase and mitosis. We find that similar to other Runx family members, Runx3 protein resides in nuclear matrix associated foci during interphase. We delineate a subnuclear targeting signal that directs Runx3 to these nuclear matrix associated foci. Our work establishes that this association of Runx3 protein with the nuclear matrix plays a vital role in regulating its transcriptional activity.
Chromatin immunoprecipitation results show that Runx3 occupies rRNA promoters during interphase. We also find that Runx3 remains associated with chromosomes during mitosis and localizes with nucleolar organizing regions (NORs), reflecting an interaction with epigenetic potential.
This thesis provides novel insights into various mechanisms by which cells regulate the activity of Runx proteins.
|
199 |
C. Elegans Metabolic Gene Regulatory Networks: A DissertationArda, H. Efsun 30 July 2010 (has links)
In multicellular organisms, determining when and where genes will be expressed is critical for their development and physiology. Transcription factors (TFs) are major specifiers of differential gene expression. By establishing physical contacts with the regulatory elements of their target genes, TFs often determine whether the target genes will be expressed or not. These physical and/or regulatory TF-DNA interactions can be modeled into gene regulatory networks (GRNs), which provide a systems-level view of differential gene expression. Thus far, much of the GRN delineation efforts focused on metazoan development, whereas the organization of GRNs that pertain to systems physiology remains mostly unexplored.
My work has focused on delineating the first gene regulatory network of the nematode Caenorhabditis elegans metabolic genes, and investigating how this network relates to the energy homeostasis of the nematode. The resulting metabolic GRN consists of ~70 metabolic genes, 100 TFs and more than 500 protein–DNA interactions. It also includes novel protein-protein interactions involving the metabolic transcriptional cofactor MDT-15 and several TFs that occur in the metabolic GRN. On a global level, we found that the metabolic GRN is enriched for nuclear hormone receptors (NHRs). NHRs form a special class of TFs that can interact with diffusible biomolecules and are well-known regulators of lipid metabolism in other organisms, including humans. Interestingly, NHRs comprise the largest family of TFs in nematodes; the C. elegans genome encodes 284 NHRs, most of which are uncharacterized. In our study, we show that the C. elegans NHRs that we retrieved in the metabolic GRN organize into network modules, and that most of these NHRs function to maintain lipid homeostasis in the nematode. Network modularity has been proposed to facilitate rapid and robust changes in gene expression. Our results suggest that the C. elegans metabolic GRN may have evolved by combining NHR family expansion with the specific modular wiring of NHRs to enable the rapid adaptation of the animal to different environmental cues.
|
200 |
A Novel Motif in HIV-1 Nef that Regulates MIP-1β Chemokine Release in Macrophages: A DissertationDai, Lue 17 June 2010 (has links)
Nef is an accessory protein encoded by human and simian immunodeficiency viruses (HIV and SIV), and is critical for viral pathogenicity in vivo.The structure of Nef has been resolved and the major cellular activities of Nef are generally described as down-regulation of cell surface molecules, enhancement of virus infectivity and regulation of cell signaling and activation. Macrophages represent a key target of HIV-1 infection and may contribute significantly to viral pathogenesis by facilitating viral propagation, maintaining a viral reservoir and regulating viral replication. During HIV-1 infection, various cytokines and chemokines are induced for viral advantages more than for host defense.
We have previously demonstrated that HIV-1 Nef regulates the release of chemokines, MIP-1α and MIP-1ß, from infected macrophages and have proposed that this may enhance conditions for viral replication by promoting recruitment of substrate lymphocytes to sites of infection (1). However, the molecular basis for this Nef activity remains to be defined. The main goals of this thesis are to identify the functional motif in Nef that is responsible for chemokine induction in macrophages and to elucidate the relevance of this motif to other Nef functions. Using a mutagenesis approach, we have eventually identified a novel motif (KEK) that regulates chemokine production in infected macrophages after we excluded several previously described Nef motifs. This motif is conserved in both HIV-1 and SIV Nef proteins. Mutations in this domain abrogated MIP-1ß induction as well as the Nef-dependent release of other secretory factors by macrophages. However, disruption of this motif did not affect other Nef-ascribed activities such as CD4 and MHC-I down-regulation. In addition, we have determined the involvement of viral Env proteins in Nef-induced chemokine production. Distinct signaling pathways that regulate chemokine release in macrophage will also be described. Finally, several possible roles of the KEK motif are proposed and some preliminary results of co-immunoprecipitation experiments will be presented which aim to characterize cellular proteins involved in chemokine regulation by Nef. Collectively, our studies reveal a specific determinant within Nef that is critical for chemokine release by Nef. Identification of this motif paves the way for future studies to explore the molecular machanisms of Nef-regulated cell signaling pathways. Such knowledge may point to new therapeutic strategies that interrupt Nef function and limit the course of HIV-1 infection.
|
Page generated in 0.0671 seconds