• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 212
  • 212
  • 158
  • 155
  • 150
  • 150
  • 106
  • 57
  • 56
  • 55
  • 53
  • 53
  • 52
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Distinct Gene Circuits Control the Differentiation of Innate Versus Adaptive IL-17 Producing T Cells: A Dissertation

Malhotra, Nidhi 10 February 2012 (has links)
T lymphocytes are distinguished by the expression of αβ TCR or γδ TCR on their cell surface. The kinetic differences in the effector functions classifies γδ T cells as innate-like lymphocytes and αβ T cells as adaptive lymphocytes. Although distinct, αβ and γδ T cell lineages produce a common array of cytokines to mount an effective immune response against a pathogen. The production of cytokine IL-17 is a shared characteristic between the γδ T (Tγδ17) cells and the CD4 T (Th17) cells. γδ T cells develop into Tγδ17 cells in the thymus whereas CD4 T cells differentiate into Th17 cells in response to antigens in the peripheral lymphoid tissues. γδ T cells exported from the thymus, as pre-made effectors, are the early IL-17 producers compared with the late IL-17 producing Th17 cells. In this thesis we describe how TGFβ-SMAD2 dependent pathway selectively regulates Th17 cell differentiation but not Tγδ17 cells generation. We further illustrate the requirement of WNT-HMG box transcription factor (TF) signaling for the thymic programming of Tγδ17 cells. Cytokine TGFβ in co-operation with IL-6 induces the differentiation of Th17 cells. Conversely, TGFβ signaling also regulates the differentiation and maintenance of CD4+FOXP3+ regulatory T cells. The mechanism by which TGFβ signals synergize with IL-6 to generate inflammatory versus immunosuppressive T cell subsets is unclear. TGFβ signaling activates receptor SMADs, SMAD2 and SMAD3, which associate with a variety of nuclear factors to regulate gene transcription. Defining relative contributions of distinct SMAD molecules for CD4 T cell differentiation is critical for mapping the versatile intracellular TGFβ signaling pathways that tailor TGFβ activities to the state of host interaction with pathogens. We show here that SMAD2 is essential for Th17 cell differentiation and that it acts in part by modulating the expression of IL-6R on T cells. While mice lacking SMAD2 specifically in T cells do not develop spontaneous lymphoproliferative autoimmunity, Smad2-/- T cells are impaired in their response to TGFβ in vitro and in vivo and they are more pathogenic than controls when transferred into lymphopenic mice. These results demonstrate that SMAD2 is essential for TGFβ signaling in CD4+ T effector cell differentiation and that it possesses functional capabilities distinct from SMAD3. Although SMAD2 is essential for the differentiation of Th17 cells, TGFβ signaling via SMAD2 is not required for the thymic programming of innate Tγδ17 cells. Among different γδ T cells, Vγ2+ (V2) γδ T cells are the major IL-17 producing subsets. We demonstrate that Sry-high mobility group (HMG) box TFs regulate the development of V2 Tγδ17 cells. We show that the HMG box TF, SOX13 functions in a positive loop for the intrathymic generation of V2 Tγδ17 cells. SOX13 regulates the programming of Tγδ17 cells by controlling the expression of B-lymphoid kinase (BLK) in developing immature V2 γδ T cells. BLK is an Src-family kinase expressed by all Tγδ17 cells. Furthermore, we show another HMG box TF, TCF1, the nuclear effector of canonical WNT signaling, is the primary negative regulator of IL-17 production by all γδ T cells. We propose that the antagonism of SOX13 and TCF1 determines the generation of IL-17 producing γδ T cells. We also show that extrinsic cues from αβ T cells do not affect the generation of IL-17 producing γδ T cells. Using OP9-DL1 culture system, we demonstrate that the progenitors of V2 Tγδ17 cells are the c-Kit+ early thymic precursors.
182

The Molecular Mechanisms Underlying the Polarized Distribution of Drosophila Dscam in Neurons: A Dissertation

Yang, Shun-Jen 14 October 2008 (has links)
Neurons exhibit highly polarized structures, including two morphologically and functionally distinct domains, axons and dendrites. Dendrites and axons receive versus send information, and proper execution of each requires different sets of molecules. Differential distribution of membrane proteins in distinct neuronal compartments plays essential roles in neuronal functions. The major goal of my doctoral thesis was to study the molecular mechanisms that govern the differential distribution of membrane proteins in neurons, using the Drosophilalarval mushroom body (MB) as a model system. My work was initiated by an observation of differential distribution of distinct Dscam isoforms in neurons. Dscam stands for Down Syndrome Cell Adhesion Molecule, which is a Drosophila homolog of human DSCAM. According to genomic analysis, DrosophilaDscam gene can generate more than 38,000 isoforms through alternative splicing in its exons 4, 6, 9 and 17. All Dscam isoforms share similar domain structures, with 10 immunoglobulin domains and 6 fibronectin type III repeats in the ectodomain, a single transmembrane domain and a cytoplasmic endodomain. There are two alternative exons in exon 17 (17.1 and 17.2), which encodes Dscam’s transmembrane domain. Interestingly, in ectopic expression, Dscam isoforms carrying exon 17.1 (Dscam[TM1]) can be preferentially localized to dendrites and cell bodies, while Dscam isoforms carrying exon 17.2 (Dscam[TM2]) are distributed throughout the entire neuron including axons and dendrites. To unravel the mechanisms involved in the differential distribution of Dscam[TM1] versus Dscam[TM2], I conducted a mosaic genetic screening to identify the possible factors affecting dendritic distribution of Dscam[TM1], established an in vivoTARGET system to better distinguish the differential distribution of Dscam, identified the axonal and dendritic targeting motifs of Dscam molecules and further showed that Dscam’s differential roles in dendrites versus axons are correlated with its localization. Several mutants affecting dendritic distribution of Dscam[TM1] have been identified using a MARCM genetic screen. Three of these mutants (Dlis1, Dmn and p24) are components of the dynein/dynactin complex. Silencing of other dynein/dynactin subunits and blocking dynein function with a dominant-negative Glued mutant also resulted in mislocalization of Dscam[TM1] from dendrites to axons. However, microtubule polarity in the mutant axons was maintained. Taken together, this was the first demonstration that the dynein/dynactin complex is involved in the polarized distribution of membrane proteins in neurons. To further examine how dynein/dynactin is involved in the dendritic distribution of Dscam[TM1], I compromised dynenin/dynactin function with dominant-negative Glued and transiently induced Dscam[TM1] expression. The results suggested that dynein/dynactin may not be directly involved in the targeting of newly synthesized Dscam[TM1] to dendrites. Instead, it plays a role in maintaining dendritic restriction of Dscam[TM1]. Notably, dynein/dynactin dysfunction did not alter distribution of another dendritic transmembrane protein Rdl (Resistant to Dieldrin), supporting involvement of diverse mechanisms in distributing distinct molecules to the dendritic membrane. To identify the targeting motifs of Dscam, I incorporated the TARGET (Temporal and regional gene expression targeting) system into mushroom body (MB) neurons, and this allowed the demonstration of the differential distribution of Dscam[TM1] and Dscam[TM2] with more clarity than conventional overexpression techniques. Using the TARGET system, I identified an axonal targeting motif located in the cytoplasmic juxtamemebrane domain of Dscam[TM2]. This axonal targeting motif is dominant over the dendritic targeting motif located in Dscam’s ectodomain. Scanning alanine mutagenesis demonstrated that two amino acids in the axonal targeting motif were essential for Dscam’s axonal distribution. Interestingly, swapping the cytoplasmic juxtamembrane portions between TM1 and TM2 not only reversed TM1’s and TM2’s differential distribution patterns but also their functional properties in dendrites versus axons. My thesis research also involved studying endodomain diversity of Dscam isoforms. Besides the diversity originally found in the ectodomain and transmembrane domain of Dscam, my colleagues and I further demonstrated the existence of four additional endodomain variants. These four variants are generated by skipping or retaining exon 19 or exon 23 through independent alternative splicing. Interestingly, different Dscam endodomain isoforms are expressed at different developmental stages and in different areas of the nervous system. Through isoform-specific RNA interference, we showed the differential involvement of distinct Dscam endodomains in specific neuronal morphogenetic processes. Analysis of the primary sequence of the Dscam endodomain indicated that endodomain variants may confer activation of different signaling pathways and functional roles in neuronal morphogenesis. In Summary, my thesis work identified and characterized several previously unknown mechanisms related to the differential distribution of membrane proteins in neurons. I showed that there may be a dynein/dynactin-independent mechanism for selective transport of dendritic membrane proteins to dendrites. Second, dynein/dynactin plays a maintenance role in dendritic restriction of Dscam[TM1]. Third, different membrane proteins may require distinct combinations of mechanisms to be properly targeted and maintained in certain neuronal compartments. Further analysis of the mutants indentified from my genetic screen will definitely help to resolve the missing pieces of the puzzle. These findings provide novel mechanistic insight into the differential distribution of membrane proteins in polarized neurons.
183

Regulation of BACH1/FANCJ Function in DNA Damage Repair: A Dissertation

Xie, Jenny X. 11 August 2009 (has links)
The DNA damage response (DDR) pathway is a complicated network of interacting proteins that function to sense and remove DNA damage. Upon exposure to DNA damage, a signaling cascade is generated. The damage is either removed, restoring the original genetic sequence, or apoptosis is activated. In the absence of DDR, cells are unable to effectively process DNA damage. Unprocessed DNA damage can lead to chromosomal changes, gene mutations, and malignant transformation. Thus, the proteins involved in DDR are critical for maintaining genomic stability. One essential DDR protein is the BRCA1 Associated C-terminal Helicase, BACH1. BACH1 was initially identified through its direct association with the BRCT domain of the Breast Cancer Associated Gene, BRCA1. Similar to BRCA1, germline mutations in BACH1were identified in patients with early onset breast cancer. Interestingly, the disease-associated mutations in BACH1 were shown to have altered helicase activity in vitro, providing a direct link between BACH1 helicase activity and disease development. The correlation between BACH1 and cancer predisposition was further confirmed by the identification of BACH1 as the cancer syndrome Fanconi anemia (FA) gene product, FANCJ. Similar to other FA proteins, suppression of FANCJ leads to decreased homologous recombination, enhanced sensitivity to DNA interstrand crosslinking (ICL) agents, and chromosomal instability. In an effort to further understand the function of FANCJ in DDR, FANCJ was shown to directly associate with the mismatch repair (MMR) protein MLH1. This interaction is facilitated by lysines 141 and 142 within the helicase domain of FANCJ. Importantly, the FANCJ/MLH1 interaction is critical for ICL repair. Furthermore, in an attempt to dissect the binding site of FANCJ on MLH1, we discovered an HNPCC associated MLH1 mutation (L607H) that has intact mismatch repair, but lacks FANCJ interaction. In contrast to the MLH1 interaction, the FANCJ/BRCA1 interaction was not required for correcting the cellular defects in FANCJ null cells. Thus, in an effort to understand the functional significance of the FANCJ/BRCA1 interaction, we discovered that FANCJ promotes Pol η dependent translesion synthesis (TLS) bypass when uncoupled from BRCA1. In this thesis, we provide evidence suggesting that FANCJ and MLH1 are functionally linked and that the interaction of these proteins is critical for repair choice.
184

Cooperating Events in Core Binding Factor Leukemia Development: A Dissertation

Madera, Dmitri 10 March 2011 (has links)
Leukemia is a hematopoietic cancer that is characterized by the abnormal differentiation and proliferation of hematopoietic cells. It is ranked 7th by death rate among cancer types in USA, even though it is not one of the top 10 cancers by incidence (USCS, 2010). This indicates an urgent need for more effective treatment strategies. In order to design the new ways of prevention and treatment of leukemia, it is important to understand the molecular mechanisms involved in development of the disease. In this study, we investigated mechanisms involved in the development of acute myeloid leukemia (AML) that is associated with CBF fusion genes. The RUNX1 and CBFB genes that encode subunits of a transcriptional regulator complex CBF, are mutated in a subset (20 – 25%) of AML cases. As a result of these mutations, fusion genes called CBFB-MYH11 and RUNX1-ETO arise. The chimeric proteins encoded by the fusion genes provide block in proliferation for myeloid progenitors, but are not sufficient for AML development. Genetic studies have indicated that activation of cytokine receptor signaling is a major oncogenic pathway that cooperates in leukemia development. The main goal of my work was to determine a role of two factors that regulate cytokine signaling activity, the microRNA cluster miR-17-92 and the thrombopoietin receptor MPL, in their potential cooperation with the CBF fusions in AML development. We determined that the miR-17-92 miRNA cluster cooperates with Cbfb-MYH11 in AML development in a mouse model of human CBFB-MYH11 AML. We found that the miR-17-92 cluster downregulates Pten and activates the PI3K/Akt pathway in the leukemic blasts. We also demonstrated that miR-17-92 provides an anti-apoptotic effect in the leukemic cells, but does not seem to affect proliferation. The anti-apoptotic effect was mainly due to activity of miR-17 and miR-20a, but not miR-19a and miR-19b. Our second study demonstrated that wild type Mpl cooperated with RUNX1-ETO fusion in development of AML in mice. Mpl induced PI3K/Akt, Ras/Raf/Erk and Jak2/Stat5 signaling pathways in the AML cells. We showed that PIK3/Akt pathway plays a role in AML development both in vitro and in vivo by increasing survival of leukemic cells. The levels of MPL transcript in the AML samples correlated with their response to thrombopoietin (THPO). Moreover, we demonstrated that MPL provides pro-proliferative effect for the leukemic cells, and that the effect can be abrogated with inhibitors of PI3K/AKT and MEK/ERK pathways. Taken together, these data confirm important roles for the PI3K/AKT and RAS/RAF/MEK pathways in the pathogenesis of AML, identifies two novel genes that can serve as secondary mutations in CBF fusions-associated AML, and in general expands our knowledge of mechanisms of leukemogenesis.
185

Inflammation Alters Histone Methylation in the Central Nervous System: Implications for Neuropsychiatric Disease: A Dissertation

Connor, Caroline M. 27 May 2011 (has links)
Maternal infection during pregnancy is associated with increased risk of both schizophrenia and autism in offspring. Based on this observation, the maternal immune activation mouse model was developed, in which pregnant rodents are treated with immune-activating agents and the brains and behavior of the adult offspring studied. This model has been found to recapitulate a variety of molecular, cellular, and behavioral abnormalities observed in both schizophrenia and autism. However, despite the abundant evidence provided by these studies that prenatal exposure to inflammation alters brain development and function later in life, the molecular mechanisms by which inflammation mediates these effects remains unclear. It has been suggested that other prenatal risk factors for neuropsychiatric disease may alter brain development, in part, via epigenetic mechanisms such as DNA methylation and histone modification. However, a link between inflammation and epigenetic modification in brain has not been established. Therefore, the focus of my thesis was to examine the effect of inflammation on the histone modification, trimethylated histone H3 lysine 4 (H3K4me3), which has been implicated in both normal brain development and in schizophrenia. In Chapter II, I describe experiments examining the effect of a specific, cytokine, interleukin-6 (IL-6), on H3K4me3 in rat forebrain culture. I show that IL-6 treatment results in altered levels of H3K4me3 at multiple gene promoters, frequently in conjunction with altered mRNA expression levels, and demonstrate that a subset of these alterations appear to be dependent on signaling via the signal transducer and activator of transcription 3 (Stat3) pathway. Furthermore, some of the genes affected by IL-6 also showed altered H3K4me3 levels in autism postmortem brain. Though a direct link still remains to be established, this observation suggests that epigenetic changes observed in neuropsychiatric disease may have been induced by prenatal exposure to inflammation. In Chapter III, I describe in vivo experiments employing the maternal immune activation (MIA) mouse model to examine the effects of prenatal inflammation on H3K4me3 in the brain of the offspring, at both fetal and adult stages. I found that immune activation resulted in increased levels of IL-6 protein in fetal brain, working memory deficits in the adult offspring, and subtle changes in H3K4me3 levels in fetal and adult brain. Taken together, these findings demonstrate that an environmental risk factor for schizophrenia and autism—namely, inflammation—is capable of inducing robust and widespread histone modifications in a model of the central nervous system and smaller changes in vivo. This suggests that prenatal exposure to inflammation in human populations may lead to increased susceptibility for neuropsychiatric disorders, in part, by altering chromatin modifications in developing brain.
186

Treating GM1 Gangliosidosis With Ex Vivo Hematopoietic Stem Cell Gene Therapy Without Using Total Body Irradiation: A Masters Thesis

Whalen, Michael 31 August 2011 (has links)
GM1 gangliosidosis is an autosomal recessive lysosomal storage disease, caused by a deficiency in the enzyme β-galactosidase. The disease affects the CNS, liver, kidney, heart and skeletal system, leading to severe neurodegeneration and death. We propose to treat this disorder using ex vivo hematopoietic stem cell therapy. The effectiveness of this therapy requires the recruitment of transduced donor cells to the CNS. This is only found to occur after mice are conditioned with total body irradiation, due to the increase in CNS cytokine production and blood brain barrier permeability that occurs. As the use of total body irradiation in pediatric patients has been linked to future developmental problems, this myeloablation approach is often avoided in younger patients in favor of a conditioning regimen using the chemotherapy drugs, busulfan and cyclophosphamide. Whether donor cells can enter the CNS when a busulfan and cyclophosphamide conditioning regimen is used has not been determined. In this study we plan to quantify the cytokine and blood-brain barrier permeability increases necessary for donor cells to be recruited to the CNS after total body irradiation. We will then investigate whether busulfan and cyclophosphamide conditioning and/or the chronic neuroinflammation present in GM1 mice can produce similar conditions and facilitate the recruitment of donor hematopoietic stem cells to the CNS. Finally we will assess whether ex vivo hematopoietic stem cell gene therapy is still an effective therapy when busulfan and cyclophosphamide are used for myeloablative conditioning.
187

Analysis of CPEB Family Protein Member CPEB4 Function in Mammalian Neurons: A Dissertation

Kan, Ming-Chung 01 June 2008 (has links)
Local protein synthesis is required for long-term memory formation in the brain. One protein family, Cytoplasmic Polyadenylation Element binding Protein (CPEB) that regulates protein synthesis is found to be important for long-term memory formation possibly through regulating local protein synthesis in neurons. The well-studied member of this family, CPEB1, mediates both translational repression and activation of its target mRNAs by regulating mRNA polyadenylation. Mouse with CPEB1 KO shows defect in memory extinction but not long-term memory formation. Three more CPEB1 homologs (CPEB2-4) are identified in mammalian system. To test if CPEB2-4 may have redundant role in replacing CPEB1 in mediating local protein synthesis, the RNA binding specificity of these homologs are studied by SELEX. The result shows CPEB2-4 bind to RNAs with consensus sequence that is distinct from CPE, the binding site of CPEB1. This distinction RNA binding specificity between CPEB1 and CPEB2-4 suggests CPEB2-4 cannot replace CPEB1 in mediating local protein synthesis. For CPEB2-4 have distinct RNA binding specificity compared to CPEB1, they are referred as CPEB-like proteins. One of CPEB-like protein, CPEB3, binds GluR2 mRNA and represses its translation. The subcellular localization of CPEB family proteins during glutamate over stimulation is also studied. The CPEB family proteins are identified as nucleus/cytoplasm shuttling proteins that depend on CRM1 for nuclear export. CPEB-like proteins share similar nuclear export ciselement that is not present in CPEB1. Over-stimulation of neuron by glutamate induces the nuclear accumulation of CPEB family proteins possibly through disrupted nuclear export. This nuclear accumulation of CPEB family protein is induced by imbalance of calcium metabolism in the neurons. Biochemical and cytological results suggest CPEB4 protein is associated with ER membrane peripherally in RNA independent manner. This research provides general description of biochemical, cytological properties of CPEB family proteins.
188

Small RNA Sorting in Drosophila Produces Chemically Distinct Functional RNA-Protein Complexes: A Dissertation

Horwich, Michael D. 10 June 2008 (has links)
Small interfering RNAs (siRNAs), microRNAs (miRNAs), and piRNAs (piRNA) are conserved classes of small single-stranded ~21-30 nucleotide (nt) RNA guides that repress eukaryotic gene expression using distinct RNA Induced Silencing Complexes (RISCs). At its core, RISC is composed of a single-stranded small RNA guide bound to a member of the Argonaute protein family, which together bind and repress complementary target RNA. miRNAs target protein coding mRNAs—a function essential for normal development and broadly involved in pathways of human disease; small interfering RNAs (siRNA) defend against viruses, but can also be engineered to direct experimental or therapeutic gene silencing; piwi associated RNAs (piRNAs) protect germline genomes from expansion of parasitic nucleic acids such as transposons. Using the fruit fly, Drosophila melanogaster, as a model organism we seek to understand how small silencing RNAs are made and how they function. In Drosophila, miRNAs and siRNAs are proposed to have parallel, but separate biogenesis and effector machinery. miRNA duplexes are excised from imperfectly paired hairpin precursors by Dicer1 and loaded into Ago1; siRNA duplexes are hewn from perfectly paired long dsRNA by Dicer2 and loaded into Ago2. Contrary to this model we found one miRNA, miR-277, is made by Dicer1, but partitions between Ago1 and Ago2 RISCs. These two RISCs are functionally distinct—Ago2 could silence a perfectly paired target, but not a centrally bulged target; Ago1 could silence a bulged target, but not a perfect target. This was surprising since both Ago1 and Ago2 have endonucleolytic cleavage activity necessary for perfect target cleavage in vitro. Our detailed kinetic studies suggested why—Ago2 is a robust multiple turnover enzyme, but Ago1 is not. Along with a complementary in vitro study our data supports a duplex sorting mechanism in which Diced duplexes are released, and rebind to Ago1 or Ago2 loading machinery, regardless of which Dicer produced them. This allows structural information embedded in small RNA duplexes to direct small RNA loading into Ago1 and/or Ago2, resulting in distinct regulatory outputs. Small RNA sorting also has chemical consequences for the small RNA guide. Although siRNAs were presumed to have the signature 2′, 3′ hydroxyl ends left by Dicer, we found that small RNAs loaded into Ago2 or Piwi proteins, but not Ago1, are modified at their 3´ ends by the RNA 2´-O-methyltransferase DmHen1. In plants Hen1 modifies the 3´ ends all small RNAs duplexs, protecting and stabilizing them. Implying a similar function in flies, piRNAs are smaller, less abundant, and their function is perturbed in hen1 mutants. But unlike plants, small RNAs are modified as single-strands in RISC rather than as duplexes. This nicely explains why the dsRNA binding domain in plant Hen1 was discarded in animals, and why both dsRNA derived siRNAs and ssRNA derived piRNAs are modified. The recent discovery that both piRNAs and siRNAs target transposons links terminal modification and transposon silencing, suggesting that it is specialized for this purpose.
189

Antibody Responses Elicited by DNA Prime-Protein Boost HIV Vaccines: A Dissertation

Vaine, Michael 08 April 2010 (has links)
The best known correlate of protection provided by vaccines is the presence of pathogen specific antibodies after immunization. However, against the Human Immunodeficiency Virus-1 (HIV-1) the mere presence of antibodies specific for the viral Envelope (Env) protein is not sufficient to provide protection. This necessitates in depth study of the humoral responses elicited during infection and by vaccination. While a significant amount of effort has been invested in studying the evolution of antibody responses to viral infection, only limited progress in understanding antibody responses elicited through vaccination has been made. In the studies described here, I attempt to rectify this deficiency by investigating how the quality of a humoral response is altered with the use of different immunization regimens, in particular a DNA prime-protein boost regimen, or with the use of different model HIV-1 Env gp120 immunogens. In a New Zealand White (NZW) rabbit model, we demonstrate that the broader neutralizing activity elicited with the DNA prime-protein boost regimen may be the result of the elicitation of a higher avidity antibody response and a unique profile of antibody specificities. Specifically, use of a DNA prime-protein boost regimen elicits antibodies targeted to the CD4 binding domain of the HIV-1 Env, a specificity that was not frequently observed when only protein based immunizations were administered. We extended this analysis to sera from healthy human volunteers who participated in early phase HIV vaccine trials utilizing either a protein alone immunization regimen, a canarypox prime-protein boost immunization regimen, or a DNA prime-protein boost immunization regimen. Evaluation of sera from these trials demonstrated that the use of a DNA prime-protein boost regimen results in an antibody response with greater neutralization breadth characterized by an increased frequency and titer of antibodies targeted toward the CD4 binding site (CD4bs). In addition to this, the antibody response elicited by the DNA prime-protein boost regimen also exhibited the capability to mediate antibody dependent cell-mediated cytotoxicity (ADCC) activity as well as activation of the complement system. Additionally, in an attempt to better understand the capabilities of antibodies elicited by a DNA prime-protein boost regimen, we generated gp120 specific monoclonal antibodies (mAbs) from a single DNA primed-protein boosted NZW rabbit. Analysis of mAbs produced from this animal revealed that use of this immunization regimen elicits an antibody repertoire with diverse epitope specificity and cross reactivity. Furthermore, these select mAbs are capable of neutralizing heterologous HIV isolates. Further application of mAb generation in rabbits may provide a valuable tool to study immunogenicity of different vaccines and immunization regimens. Concurrently, while demonstrating that a DNA prime-protein boost regimen elicits a higher quality antibody response than that observed with other leading techniques, we also demonstrated that immunogen selection can play a vital role in the quality of the resulting antibody response. By immunizing with two closely related but phenotypically distinct model gp120 immunogens, known as B33 and LN40, we demonstrated that disparate gp120s have different intrinsic abilities to raise a heterologous neutralizing antibody response. Additionally, we showed that residues found within and flanking the b12 and CD4 binding sites play critical roles in modulating neutralizing activity of sera from animals immunized with LN40 gp120, indicating that the broader neutralizing activity seen with this immunogen may be due to differential elicitation of antibodies to this domain.
190

CD4+ T Cell Responses: A Complex Network of Activating and Tolerizing Signals as Revealed by Gene Expression Analysis: A Dissertation

Brown, David Spaulding 20 September 2005 (has links)
Immunologic self-tolerance is maintained by both central and peripheral mechanisms. Furthermore, regulation of mature lymphocyte responses is governed by inhibitory as well as stimulatory signals. TCR recognition of cognate peptide bound to MHC molecules provides the initial stimulus leading to T lymphocyte activation and determines the antigen specificity of any subsequent response. However, lymphocytes must discriminate between foreign and self antigens presented by self-MHC molecules to maintain self tolerance and avoid pathological autoimmunity. Consequently, TCR ligation alone is reported to result in abortive activation, T cell anergy, apoptosis, and tolerance. Under normal physiological conditions, costimulatory signals modify lymphocyte responsiveness to TCR ligation to prevent autoimmunity while enabling robust responses to foreign antigen. Members of the CD28/B7 superfamily provide the critical secondary signals essential for normal immune cell function. CD28 is an essential positive costimulatory molecule with critical functions in thymic development, lineage commitment, and regulation of peripheral lymphocyte responses to antigenic stimuli. CD28 ligation by APC-expressed B7 molecules alters proximal signaling events subsequent to MHC/TCR interactions, and initiates unique signaling pathways that alter mRNA stability and gene transcription. Furthermore, CD28 signaling is required for regulatory T cell development and function. Thus, CD28 has a central role in both potentiating lymphocyte activation mediated by TCR engagement and regulating peripheral tolerance. In contrast, Ctla-4 mediates an inhibitory signal upon binding B7 molecules on an antigen-presenting cell. Its importance in governing lymphocyte responses is manifested in the fatal lymphoproliferative disorder seen in Ctla-4-/- mice. The lymphocyte proliferation is polyclonal, antigen and CD28 dependent, and arises from defects in peripheral CD4+T cell regulation. The high percentage of peripheral T lymphocytes expressing activation markers is accompanied by lymphocyte infiltration into numerous non-lymphoid tissues and results in death by 3-4 weeks. While still controversial, Ctla-4 signaling has been reported to be essential for induction of peripheral T lymphocyte tolerance in vivo and in some model systems is proposed to regulate both T lymphocyte anergy induction and the immune suppressive effects of some regulatory T cells in the prevention of autoimmunity. Signaling pathways activated by TCR ligation and CD28 costimulation have been extensively characterized. In contrast, the mechanisms mediating Ctla-4 maintenance of tolerance remain largely unknown. Ctla-4 gene expression is tightly controlled during T cell development and activation, and its intracellular localization and expression on the cell surface is regulated by numerous pathways and intermediates. While a tailless Ctla-4 mutant is capable of inhibiting T cell activation, recent studies have shown that a ligand independent form of Ctla-4 is also capable of providing an inhibitory signal to T lymphocytes. In conjunction with the strictly controlled expression kinetics and the perfect amino acid homology between the intracellular domains of mouse and human Ctla-4, this data suggests that Ctla-4 may participate in the modulation or initiation of intracellular signaling pathways. Positive and negative costimulatory receptors on the T cell modify lymphocyte responses by altering both quantitative and qualitative aspects of the lymphocyte response including threshold of activation, cytokine secretion, and memory responses. Positive costimulation augments T cell responses, in part, by downregulating the expression of genes that actively maintain the quiescent phenotype. This study was initiated to determine the role of Ctla-4 ligation in modifying the global gene expression profile of stimulated T cells and to determine if the Ctla-4 mediated maintenance of T cell tolerance was achieved, in part, by altering the transcription of quiescence genes necessary for the prevention of T cell activation subsequent to TCR and CD28 stimulation. Previous studies investigating the influence of Ctla-4 ligation on transcriptional profiles of activated lymphocytes detected only quantitative alterations in the transcriptional regulation initiated by CD28 signaling. In contrast, our data suggests that quantitative effects of Ctla-4 ligation that differentially influence pathways acting downstream of stimulatory receptors results in a stable and qualitatively unique phenotype detectable at the level of the transcriptome. Thus, the cumulative effect of Ctla-4 signaling is unique and not constrained to reversing alterations in expression initiated by CD28. In addition, Ctla-4 ligation can be shown to influence T lymphocyte responsiveness and the resulting global expression profile within 4 hours after stimulation and prior to detectable Ctla-4 surface expression. In a subpopulation of T cells, TCR stimulation activates pathways that result in commitment to activation with 2-6 hours. In contrast, CD28 signaling must be maintained for 12-16 hours to ensure maximal responses at the population level. The period of sensitivity to Ctla-4 inhibition of activation is more constrained and does not extend beyond 12 hours. Together, these data support a potential role for Ctla-4 in modification of the early transcriptional response and may explain various alterations in phenotype resulting from Ctla-4 ligation that have been reported in secondary responses. Identification of genes involved in lymphocyte activation, maintenance of selftolerance, and attenuation of immune responses opens the door to therapeutic manipulation of the pathways implicated. CD28 costimulation results in general amplification of TCR-initiated transcriptional responses, and specifically alters the expression profile of a subset of genes. In contrast, Ctla-4 ligation directly and specifically alters the expression of a select group of genes when ligated, and results in minimal suppression of the global CD28-mediated costimulatory transcriptional response. Ctla-4 regulated genes comprise a heterogeneous family, but include known quiescence factors, transcriptional regulators, and various determinants of cell cycle progression and senescence. The role of Ctla-4 in maintaining self-tolerance indicates that targeted manipulation of these gene products presents a novel therapeutic opportunity, and suggests that the mechanisms involved in Ctla-4-mediated maintenance of peripheral T cell tolerance and regulation of immune responsiveness is more nuanced than previously thought. In addition, this study provides the most comprehensive description of global gene expression during primary lymphocyte activation yet available. The integration of statistical and bioinfomatics analyses with large scale data mining tools identifies genes not previously characterized in lymphocytes and can direct future work by predicting potentially interacting gene products and pathways.

Page generated in 0.0528 seconds