Spelling suggestions: "subject:"genome equencing"" "subject:"genome bysequencing""
101 |
Bioremediation of Toxic Metals for Protecting Human Health and the EcosystemRahman, Aminur January 2016 (has links)
Heavy metal pollutants, discharged into the ecosystem as waste by anthropogenic activities, contaminate drinking water for millions of people and animals in many regions of the world. Long term exposure to these metals, leads to several lethal diseases like cancer, keratosis, gangrene, diabetes, cardio- vascular disorders, etc. Therefore, removal of these pollutants from soil, water and environment is of great importance for human welfare. One of the possible eco-friendly solutions to this problem is the use of microorganisms that can accumulate the heavy metals from the contaminated sources, hence reducing the pollutant contents to a safe level. In this thesis an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, a chromium resistant bacterium Enterobacter cloacae B2-DHA and a nickel resistant bacterium Lysinibacillus sp. BA2 were isolated and studied. The minimum inhibitory concentration values of these isolates are 500 mM sodium arsenate, 5.5 mM potassium chromate and 9 mM nickel chloride, respectively. The time of flight-secondary ion mass spectrometry and inductively coupled plasma-mass spectroscopy analyses revealed that after 120 h of exposure, the intracellular accumulation of arsenic in B1-CDA and chromium in B2-DHA were 5.0 mg/g dwt and 320 μg/g dwt of cell biomass, respectively. However, the arsenic and chromium contents in the liquid medium were reduced to 50% and 81%, respectively. The adsorption values of BA2 when exposed to nickel for 6 h were 238.04 mg of Ni(II) per gram of dead biomass indicating BA2 can reduce nickel content in the solution to 53.89%. Scanning electron micrograph depicted the effect of these metals on cellular morphology of the isolates. The genetic composition of B1-CDA and B2-DHA were studied in detail by sequencing of whole genomes. All genes of B1-CDA and B2-DHA predicted to be associated with resistance to heavy metals were annotated. The findings in this study accentuate the significance of these bacteria in removing toxic metals from the contaminated sources. The genetic mechanisms of these isolates in absorbing and thus removing toxic metals could be used as vehicles to cope with metal toxicity of the contaminated effluents discharged to the nature by industries and other human activities.
|
102 |
A genome based approach to characterize genes involved in yeast adaptation to Sherry-like wines’ biological ageing / Caractérisation des gènes impliqués dans l'adaptation des levures à l'élevage en voile en utilisant une approche génomiqueCoi, Anna Lisa 21 February 2014 (has links)
La fermentation œnologique et le vieillissement oxydatif des vins sous voile représentent des modes de vie très contrastés qui sont effectués par deux lignées différentes de souches de levures de l'espèce Saccharomyces cerevisiae. Dans cette thèse, nous avons comparé le génome de souches de levures de voile à celui de levures de vin afin de détecter leurs spécificités. Nous tout d'abord sélectionné 16 souches (8 levures de vin et 8 levures de voile) isolées en France, Hongrie, Italie et Espagne, pour séquencer leur génome sur une plateforme Illumina (HiSeq2000). Nous avons également développé un ensemble de souches de vin et de voile haploïdes pour l'évaluation moléculaire de différentes cibles. Nous avons également mis au point un milieu synthétique mimant le vin à cette fin. A partir de la comparaison des séquences du génome nous avons établi une phylogénie qui montre que les levures de voile représentent un groupe spécifique de levure, différentes des levures de vin, puis à partir de différentes méthodes (analyse en composantes principale, diversité nucléotidique et D de Tajima) nous avons identifié des régions divergentes. Ces régions variantes comprennent des gènes remplissant plusieurs fonctions clé associées à la croissance en voile. En particulier, des variations alléliques ont été rencontrées chez les levures de voile pour plusieurs gènes impliqués dans la régulation de l'expression de FLO11 tels que les voies MAP kinase, ou des voies Ras/cAMP/PKA, ainsi que pour plusieurs gènes impliqués dans l'homéostasie des cations divalents de métaux de transition tels que le zinc, le cuivre ou le fer. La comparaison des transcriptomes d'une levure de voile et d'une levure de vin sur notre milieu synthétique a révélé des différences d'expression pour les floculines (FLO1, 5, 8, 11) ainsi que pour le transport des hexoses, mais a également suggéré que la levure de voile P3-D5 était en situation de carence en zinc et en inositol par rapport à la levure de vin, tandis que la levure de vin K1 exprimait certains gènes suggérant des défauts mitochondriaux. L'impact de la variation allélique de plusieurs gènes a été évalué dans le phénotype de voile: le transporteur de zinc à haute affinité Zrt1 ainsi que la pyruvate décarboxylase majeure Pdc1. / Wine fermentation and flor ageing are performed by two groups of the yeast Saccharomyces cerevisiae, with very different lifestyles. In this thesis we have studied the genome of flor yeast in comparison to wine yeast in order to unravel their specificities. We have first selected 16 strains (8 wine and 8 flor) from France, Hungary, Italy and Spain in order to sequence their genome sequence on an Illumina HiSeq2000 platform. Three flor strains and two wine strains were haploidized in order to obtain a set of haploid flor strains for the molecular evaluation of different targets. We developed as well a synthetic media mimicking wine for that purpose. From the genome sequence we have drawn a phylogeny that showed that flor yeasts represent a specific lineage of yeast, different from the wine strains lineage, and identified divergent regions. These regions contain genes involved in key functions and several associated with velum growth. Remarkably, many genes involved in FLO11 regulation such as MAP kinase, or Ras/PKA pathways were mutated among flor strains and many variations were encountered in genes involved in metal homeostasis such as zinc and divalent metal transporters. A transcriptome analysis comparing one flor and one wine yeast on our wine synthetic media revealed expression differences associated to floculins and hexose transport, but also suggested that flor yeast P3-D5 face a zinc and inositol deficiency, whereas wine yeast K1 presented mitochondrial defects. The impact of allelic variation of several genes coding for the high affinity zinc transporter (ZRT1), and the major pyruvate decarboxylase (PDC1) has been evaluated in order to assess their role in the flor phenotype.
|
103 |
Bioremediation of Toxic Metals for Protecting Human Health and the EcosystemRahman, Aminur January 2016 (has links)
Heavy metal pollutants, discharged into the ecosystem as waste by anthropogenic activities, contaminate drinking water for millions of people and animals in many regions of the world. Long term exposure to these metals, leads to several lethal diseases like cancer, keratosis, gangrene, diabetes, cardio- vascular disorders, etc. Therefore, removal of these pollutants from soil, water and environment is of great importance for human welfare. One of the possible eco-friendly solutions to this problem is the use of microorganisms that can accumulate the heavy metals from the contaminated sources, hence reducing the pollutant contents to a safe level. In this thesis an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, a chromium resistant bacterium Enterobacter cloacae B2-DHA and a nickel resistant bacterium Lysinibacillus sp. BA2 were isolated and studied. The minimum inhibitory concentration values of these isolates are 500 mM sodium arsenate, 5.5 mM potassium chromate and 9 mM nickel chloride, respectively. The time of flight-secondary ion mass spectrometry and inductively coupled plasma-mass spectroscopy analyses revealed that after 120 h of exposure, the intracellular accumulation of arsenic in B1-CDA and chromium in B2-DHA were 5.0 mg/g dwt and 320 μg/g dwt of cell biomass, respectively. However, the arsenic and chromium contents in the liquid medium were reduced to 50% and 81%, respectively. The adsorption values of BA2 when exposed to nickel for 6 h were 238.04 mg of Ni(II) per gram of dead biomass indicating BA2 can reduce nickel content in the solution to 53.89%. Scanning electron micrograph depicted the effect of these metals on cellular morphology of the isolates. The genetic composition of B1-CDA and B2-DHA were studied in detail by sequencing of whole genomes. All genes of B1-CDA and B2-DHA predicted to be associated with resistance to heavy metals were annotated. The findings in this study accentuate the significance of these bacteria in removing toxic metals from the contaminated sources. The genetic mechanisms of these isolates in absorbing and thus removing toxic metals could be used as vehicles to cope with metal toxicity of the contaminated effluents discharged to the nature by industries and other human activities.
|
104 |
Capacité de différents outils de typage moléculaire pour tracer Campylobacter jejuni et identifier l’origine de contamination en cas de campylobactériose / Ability of several genotyping methods to track Campylobacter jejuni and identify the source of human campylobacteriosisThépault, Amandine 10 January 2018 (has links)
Campylobacter est responsable de la zoonose bactérienne d’origine alimentaire la plus fréquemment reportée en Europe. Cette bactérie étant ubiquitaire, les sources et voies d’infection de l’Homme sont nombreuses. Cependant, afin de diminuer l’incidence de la maladie, il est nécessaire d’identifier les principaux réservoirs impliqués dans les infections humaines. Pour cela, nous avons dans un premier temps investigué la présence de Campylobacter dans trois réservoirs animaux (volaille, bovin, animaux de compagnie), ainsi que la diversité génétique des isolats de C. jejuni, en comparaison à celle d’isolats cliniques, à l’aide des techniques MLST (Multilocus sequence typing) et CGF (Comparative Genomic Fingerprinting). Afin d’identifier l’origine des campylobactérioses avec précision et de compenser notamment les limites techniques de la MLST, 15 marqueurs génétiques ont été sélectionnés comme marqueurs potentiellement indicateurs de l’hôte, après analyse de plus de 800 génomes de C. jejuni. Par la suite, la capacité de la MLST, la CGF40 et des 15 marqueurs à identifier l’origine des campylobactérioses a été étudiée. Ainsi, les 15 marqueurs se sont révélés être particulièrement performants pour l’attribution de sources des campylobactérioses, suivis ensuite par la MLST, tandis que la CGF40 est apparue comme étant peu adaptée. A partir des données MLST et des 15 marqueurs génétiques, une implication majoritaire des volailles et des bovins a été mis en évidence en France, tandis que les animaux de compagnie et l’environnement (comprenant eau et oiseaux sauvages) étaient faiblement impliqués. Ceci permet ainsi de renforcer les efforts de recherche relatifs aux moyens de lutte contre Campylobacter menés dans ces réservoirs. Ce travail a également permis de mettre en évidence de potentielles spécificités nationales dans la dynamique de transmission de C. jejuni à l’Homme. / Campylobacter is the causal agent of the main bacterial foodborne gastroenteritis in Europe. Since Campylobacter is frequently found in animal reservoirs, sources of human infection and transmission routes are various. However, to decrease the human burden of campylobacteriosis, it is essential to quantify the relative importance of the several reservoirs in human infections. For this purpose, we assessed the contamination of chicken, cattle and pets by Campylobacter spp., and further characterized C. jejuni isolates using MLST (Multilocus Sequence Typing) and CGF (Comparative Genomic Fingerprinting) in comparison with French clinical isolates. Then, in order to identify the most likely origin of campylobacteriosis cases in France and overcome MLST limitations in source attribution, about 800 C. jejuni genomes were analyzed which resulted in the identification of 15 genes as promising host segregating markers for source attribution. Subsequently, we assessed the ability of MLST, CGF40 and the 15 host-segregating markers to identify the most likely origin of campylobacteriosis. The 15 host-segregating markers were the most powerful in source attribution, followed by MLST, while CGF40 appeared to be not suitable for source attribution in our study. Based on MLST and the 15 markers, assignments of clinical cases emphasize the significant implication of chicken and ruminant in human infection by Campylobacter, while pets and the environment (including water and wild birds) were slightly involved, reinforcing the interest to focus control strategies on livestock. Finally this work highlights potential national variations in the transmission dynamics of C. jejuni to human.
|
105 |
AN EVOLUTIONARY GENOMICS STUDY FOR CONSERVATION OF THE MONTEZUMA QUAILSamarth Mathur (9760598) 14 December 2020 (has links)
<p>Humans have altered natural landscape since the agricultural revolution, but it has been most destructive since human globalization and rampant industrialization in the last two centuries. These activities deteriorate and fragments natural habitat of many wild species that creates small isolated populations that lose genetic diversity over time. Loss of genetic diversity reduces the adaptive capacity of a population to respond to future environmental change and increases their extinction risks. Implementing strategies for wildlife conservation is a challenge primarily because of our lack of understanding of the biology of many wild species, the risks they are currently facing, and their evolutionary histories. With the advent of genomic and computational techniques, it is now possible to address these concerns. In my research, I used genomics to study the evolutionary history of the Montezuma Quail (<i>Cyrtonyx montezumae</i>) and created monitoring tools that can be readily applied by wildlife managers for its conservation. Montezuma Quail is a small gamebird found mostly in Mexico with peripheral populations existing in Arizona, New Mexico, and Texas. Montezuma Quail are going through species wide decline in the United States and are listed as vulnerable in the state of Texas due to their small population sizes and geographic isolation from rest of the range. My results show that Texas quail are genetically distinct and significantly less diverse than Arizona quail. Analysis of whole genome sequences from multiple individuals show that due to small population sizes and isolation, Texas quail are significantly more inbred and genetic drift is the major contributor for loss of genetic diversity we see today. Inbreeding is negatively impacting Texas quail as they carry more deleterious alleles within their genome that reduce fitness of the individuals. Demographic models predict that both Arizona and Texas populations were formed via founding bottlenecks around 20,000 years ago. Texas populations have maintained small population sizes since its split from the ancestral populations and are less efficient in purging new deleterious mutations that arise post-bottleneck. The inferences from my research not only carries direct implications for Montezuma Quail conservationists, but also illustrate the power of evolutionary genomics in implementing targeted management strategies for any species that face existential threats in today’s waning world. </p>
|
106 |
Using Phased Whole Genome Sequence Data to Better Understand the Role of Compound-Heterozygous Variants in Pediatric DiseasesMiller, Dustin B. 14 July 2021 (has links)
A compound-heterozygous variant occurs when a child inherits a variant from each parent, with these variants occurring at a different position within the same gene and on opposite homologous chromosomes. These inherited variants may result in two nonfunctional versions of the same gene. Compound-heterozygous variants cannot be identified unless a patients' DNA sequence data is phased. Phasing is a computationally demanding process that requires the use of multiple software tools in order to determine which nucleotide was inherited from which parent. First, in Chapter 1, we review the literature to better understand what research has been conducted on the role of compound-heterozygous variants in pediatric cancers and what methods are being used to identify them. In Chapter 2, we develop a pipeline to make it easier for us and other researchers to phase and identify compound-heterozygous variants using VCF files from trios or individuals. We then use this pipeline in Chapter 3 to survey the prevalence of compound-heterozygous variants across 7 pediatric disease types. We show the importance of identifying compound heterozygous and what information would be missed if this variant type was not included in study design. In Chapter 4, we develop a software tool to phase trio data using a combination of Mendelian inheritance logic and an existing phasing software program. We show that our software tool increases the total number of variants that can be phased. Finally, in Chapter 5, we use phased data of three nuclear families, each family having one child with pediatric cancer, to evaluate the potential to use inherited genomic variants to inform diagnostic decisions. The work contained within this dissertation shows the importance of not overlooking compound-heterozygous variants when trying to identify potentially causal genes in pediatric disease. In addition, this work provides software tools that are openly available for other researchers to use; these tools make it easier to phase patient DNA sequence data and to identify compound-heterozygous variants.
|
107 |
DETECTING LOW FREQUENCY AND RARE VARIANTS ASSOCIATED WITH BLOOD PRESSUREHe, Karen Yingyi 28 January 2020 (has links)
No description available.
|
108 |
Use of comparative genomics and in vitro screening approach to identify vaccine candidates for the food-borne pathogen Campylobacter jejuniPoudel, Sabin 08 August 2023 (has links) (PDF)
Campylobacteriosis is a leading foodborne illness worldwide, primarily caused by Campylobacter jejuni (C. jejuni) which is associated with poultry consumption. The emergence of antibiotic resistance has emphasized the need for alternative strategies to control C. jejuni colonization in poultry. To assess the prevalence of C. jejuni in poultry, 270 cloacal swab samples were collected from broilers raised under No-Antibiotics Ever system. Among these samples, 16.3% were identified as C. jejuni positive. Notably, these isolates exhibited a diverse range of virulence factors and antimicrobial resistance genes, with 61.36% of isolates showing hyper-motile and 20.45% demonstrating multidrug resistance. Following isolation, whole genome sequencing was conducted on four selected strains using a hybrid sequencing approach. Subsequently, the complete genomes of these C. jejuni strains were analyzed to identify vaccine candidates using reverse vaccinology. Three conserved potential vaccine candidates were identified as suitable targets for vaccine development, namely phospholipase A (PldA), TonB dependent transporter (ChuA), and cytolethal distending toxin (CdtB). Furthermore, the gene expression of these candidates was examined in four C. jejuni strains during host-pathogen interactions using avian macrophage cell line HD11. Significant upregulation of all three candidate genes were observed in the four tested C. jejuni strains during interaction with host cells, indicating their crucial role in C. jejuni infection. Additionally, the expression of immune genes was evaluated in avian macrophage cells to understand the immune responses during C. jejuni infection. The infection resulted in the upregulation of toll-like receptor genes (TLR-4), pro-inflammatory genes (IL-1β, IFN-γ, IL-6, IL-8L1), anti-inflammatory gene (IL-10), and iNOS2 gene expression. The observed immune response demonstrates the potential of C. jejuni to induce host immunity for protection. In conclusion, our study identifies three conserved potential vaccine candidates and provides insights into the immune responses induced by C. jejuni infection in avian macrophage cells. These findings are crucial for the development of an effective vaccine against C. jejuni, aiming to reduce C. jejuni transmission through poultry consumption and the risk of human infection.
|
109 |
Towards a Better Understanding of the Metabolism, Physiology, and Ecology of Rumen Protozoa: New Insights from Culturomics and GenomicsPark, Tansol January 2017 (has links)
No description available.
|
110 |
Developing Informatics Tools and Methods Utilizing Whole Genome Sequencing and Transcription Data to Aid Gene Discovery in Medicago truncatulaTroiani, Taylor 12 1900 (has links)
Research into the mechanism of symbiotic nitrogen fixation between legumes and rhizobia involves a complex interaction between the organisms, and many genes involved in this remain either uncharacterized or undiscovered. Using forward genetics, mutant plant lines are screened to find new genes without reliance on software-based gene prediction. A large population of Tnt1-mutagenized Medicago truncatula lines is used for this purpose.
Herein, the aid of tools like whole genome sequencing (WGS) in this process is explored so that new methods and tools are elucidated. The use of WGS data allows for rapid prediction of all insertions in the genome and has been shown to predict insertion locations that were missed by the TAIL-PCR-based Tnt1 mutant database already in existence. This WGS strategy has been successfully used to find the causal mutations in multiple plant lines. Two WGS strategies are used to analyze insertions in nine sequenced lines and compared with each other and the existing Tnt1 mutant database. It appears that using either WGS method will yield similar results, but the TAIL-PCR-based predictions have much less overlap. The use of the latest R108 genome appears to decrease the degree of disagreement between the methods, while the correlation in the A17 genome update is less clear.
There is also a demonstration of the use of other tools in addition to the WGS prediction output. Combining transcription data from previous experiments with the predicted insertions allowed for the creation of more holistic tables, which could better assist in screening the predictions made for the most likely candidate by highlighting those with expression profiles consistent with the observed mutation phenotype.
Each of these tools and methods has been shown to be effective in screening Tnt1-mutagenized M. truncatula lines to find novel genes. Without further experimental data, determining the most accurate method is not possible. The best practice may be to use multiple methods and align them in comparison tables, leveraging all the predictive power of each of the methods into a single table.
|
Page generated in 0.0518 seconds