Spelling suggestions: "subject:"genome duplication"" "subject:"fenome duplication""
1 |
Comparative analyses of regions of the puffer fish (Fuga rubripes) genome sharing synteny with human chromosome 9q34Bederr, Nassima January 2003 (has links)
No description available.
|
2 |
Were vertebrates octoploid? : a molecular phylogenic analysis of chordate evolutionFurlong, Rebecca Felicity January 2003 (has links)
No description available.
|
3 |
Organisation, expression and evolution of Krüppel-type zinc finger genes in human chromosomal region 10p11.2-q11.2Hearn, Thomas January 2000 (has links)
No description available.
|
4 |
A phylogenomic assessment of ancient polyploidy and genome evolution across the PoalesMcKain, Michael R., Tang, Haibao, McNeal, Joel R., Ayyampalayam, Saravanaraj, Davis, Jerrold I., dePamphilis, Claude W., Givnish, Thomas J., Pires, J. Chris, Stevenson, Dennis Wm., Leebens-Mack, Jim H. 17 March 2016 (has links)
Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy characterized by large intragenomic syntenic blocks. Three such whole-genome duplication (WGD) events, designated as rho (rho), sigma (sigma), and tau (tau), have been identified in the genomes of cereal grasses. Precise dating of these WGD events is necessary to investigate how they have influenced diversification rates, evolutionary innovations, and genomic characteristics such as the GC profile of protein-coding sequences. The timing of these events has remained uncertain due to the paucity of monocot genome sequence data outside the grass family (Poaceae). Phylogenomic analysis of protein-coding genes from sequenced genomes and transcriptome assemblies from 35 species, including representatives of all families within the Poales, has resolved the timing of rho and sigma relative to speciation events and placed tau prior to divergence of Asparagales and the commelinids but after divergence with eudicots. Examination of gene family phylogenies indicates that rho occurred just prior to the diversification of Poaceae and sigma occurred before early diversification of Poales lineages but after the Poales-commelinid split. Additional lineage-specific WGD events were identified on the basis of the transcriptome data. Gene families exhibiting high GC content are underrepresented among those with duplicate genes that persisted following these genome duplications. However, genome duplications had little overall influence on lineage-specific changes in the GC content of coding genes. Improved resolution of the timing of WGD events in monocot history provides evidence for the influence of polyploidization on functional evolution and species diversification.
|
5 |
Nucleosome positioning dynamics in evolution and diseaseHu, Zhenhua January 2016 (has links)
Nucleosome positioning is involved in a variety of cellular processes, and it provides a likely substrate for species evolution and may play roles in human disease. However, many fundamental aspects of nucleosome positioning remain controversial, such as the relative importance of underlying sequence features, genomic neighbourhood and trans-acting factors. In this thesis, I have focused on analyses of the divergence and conservation of nucleosome positioning, associated substitution spectra, and the interplay between them. I have investigated the extent to which nucleosome positioning patterns change following the duplication of a DNA sequence and its insertion into a new genomic region within the same species, by assessing the relative nucleosome positioning between paralogous regions in both the human (using in vitro and in vivo datasets) and yeast (in vivo) genomes. I observed that the positioning of paralogous nucleosomes is generally well conserved and detected a strong rotational preference where nucleosome positioning has diverged. I have also found, in all datasets, that DNA sequence features appear to be more important than local chromosomal environments in nucleosome positioning evolution, while controlling for trans-acting factors that can potentially confound inter-species comparisons. I have also examined the relationships between chromatin structure and DNA sequence variation, with a particular focus on the spectra of (germline and somatic) substitutions seen in human diseases. Both somatic and germline substitutions are found to be enriched at sequences coinciding with nucleosome cores. In addition, transitions appear to be enriched in germline relative to somatic substitutions at nucleosome core regions. This difference in transition to transversion ratio is also seen at transcription start sites (TSSs) genome wide. However, the contrasts seen between somatic and germline mutational spectra do not appear to be attributable to alterations in nucleosome positioning between cell types. Examination of multiple human nucleosome positioning datasets shows conserved positioning across TSSs and strongly conserved global phasing between 4 cancer cell lines and 7 non-cancer cell lines. This suggests that the particular mutational profiles seen for somatic and germline cells occur upon a common landscape of conserved chromatin structure. I extended my studies of mutational spectra by analysing genome sequencing data from various tissues in a cohort of individuals to identify human somatic mutations. This allowed an assessment of the relationship between age and mutation accumulation and a search for inherited genetic variants linked to high somatic mutation rates. A list of candidate germline variants that potentially predispose to increased somatic mutation rates was the outcome. Together these analyses contribute to an integrated view of genome evolution, encompassing the divergence of DNA sequence and chromatin structure, and explorations of how they may interact in human disease.
|
6 |
Automated methods to infer ancient homology and syntenyCatchen, Julian M., 1978- 06 1900 (has links)
xiv, 196 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Establishing homologous (evolutionary) relationships among a set of genes allows us to hypothesize about their histories: how are they related, how have they changed over time, and are those changes the source of novel features? Likewise, aggregating related genes into larger, structurally conserved regions of the genome allows us to infer the evolutionary history of the genome itself: how have the chromosomes changed in number, gene content, and gene order over time? Establishing homology between genes is important for the construction of human disease models in other organisms, such as the zebrafish, by identifying and manipulating the zebrafish copies of genes involved in the human disease. To make such inferences, researchers compare the genomes of extant species. However, the dynamic nature of genomes, in gene content and chromosomal architecture, presents a major technical challenge to correctly identify homologous genes. This thesis presents a system to infer ancient homology between genes that takes into account a major but previously overlooked source of architectural change in genomes: whole-genome duplication. Additionally, the system integrates genomic conservation of synteny (gene order on chromosomes), providing a new source of evidence in homology assignment that complements existing methods. The work applied these algorithms to several genomes to infer the evolutionary history of genes, gene families, and chromosomes in several case studies and to study several unique architectural features of post-duplication genomes, such as Ohnologs gone missing. / Committee in charge: John Conery, Chairperson, Computer & Information Science;
Virginia Lo, Member, Computer & Information Science;
Arthur Farley, Member, Computer & Information Science;
John Postlethwait, Member, Biology;
William Cresko, Outside Member, Biology
|
7 |
Analysis of Maize Subgenomes Reveals No Pronounced Bias in Pericentromeric RegionsYin, Liangwei 19 November 2021 (has links)
No description available.
|
8 |
Development of Genomic Resources for the Conservation of the Endangered Pallid Sturgeon (Scaphirhynchus albus)Flamio, Richard, Jr. 01 May 2022 (has links) (PDF)
Order Acipenseriformes (sturgeons and paddlefishes) is an ancient lineage of bony fishes (> 200 million years old) with most extant species at conservation risk. The pallid sturgeon, Scaphirhynchus albus, is a federally endangered species native to the Mississippi and Missouri River basins. Hybridization with sympatric shovelnose sturgeon, S. platorynchus, is one of several threats to pallid sturgeon. Current molecular markers cannot reliably distinguish among pure species and multigenerational backcrosses. This information is critical for implementation of management strategies to increase populations through natural reproduction and artificial propagation. Genotypes from a large panel of unlinked single-nucleotide polymorphisms (SNPs) may provide greater resolution of the two species; however, paralogous sequence variants (PSVs) within individuals resulting from an ancient whole genome duplication event confound SNP development. The aim of this dissertation was to produce unlinked disomic SNPs that would increases resolution between pallid sturgeon and shovelnose sturgeon. This was achieved by producing haploid gynogens, which contain only DNA from the maternal parent, and then producing a reference from these haploid gynogens. Sequence assembly based on haploids informed the presence of multi-locus contigs. More than 11,000 disomic SNP markers were produced that differentiate between the two species by mapping 120 individuals of either species onto the haploid reference. A linkage map, based on three haploid families, was able to resolve some paralogs and can be used to inform which discriminatory SNP markers are linked. Future research should convert the disomic markers derived in this study to an applied form, such as that achieved by genotyping-by-thousands.
|
9 |
Gene Expression Regulation Evolution following Whole Genome Duplication: two comparative studies in Xenopus clawed frogsAnderson, Dave 08 1900 (has links)
<p> Gene expression, and its mechanisms of regulation, remains a major area for
contemporary research in evolution. With its role connecting specific gene
sequences and their protein products, contributing to efforts toward understanding
the specific contributions of different mechanisms of gene expression regulation is
the goal of this thesis. Through two specific case studies, this thesis examines
expression regulatory divergence in two different physiological contexts; the
immuno-response rag1 and rag2 genes, and the male upregulated sex differentiation
gene dmrt1. </p> / Thesis / Master of Science (MSc)
|
10 |
Evolutionary and Pharmacological Studies of NPY and QRFP ReceptorsXu, Bo January 2014 (has links)
The neuropeptide Y (NPY) system consists of 3-4 peptides and 4-7 receptors in vertebrates. It has powerful effects on appetite regulation and is involved in many other biological processes including blood pressure regulation, bone formation and anxiety. This thesis describes studies of the evolution of the NPY system by comparison of several vertebrate species and structural studies of the human Y2 receptor, which reduces appetite, to identify amino acid residues involved in peptide-receptor interactions. The NPY system was studied in zebrafish (Danio rerio), western clawed frog (Xenopus tropicalis), and sea lamprey (Petromyzon marinus). The receptors were cloned and functionally expressed and their pharmacological profiles were determined using the native peptides in either binding studies or a signal transduction assay. Some peptide-receptor preferences were observed, indicating functional specialization. A receptor family closely related to the NPY receptors, called the QRFP receptors, was investigated. A QRFP receptor was cloned from amphioxus, Branchistoma floridae, showing that the receptor arose before the origin of the vertebrates. Evolutionary studies demonstrated that the ancestral vertebrate had as many as four QRFP receptors, only one of which remains in mammals today. This correlates with the NPY receptor family, located in the same chromosomal regions, which had seven members in the ancestral vertebrate but only 4-5 in living mammals. Some vertebrates have considerably more complex NPY and QRFP receptor systems than humans and other mammals. Two studies investigated interactions of NPY-family peptides with the human Y2 receptor. Candidate residues, selected based on structural modeling and docking, were mutated to disrupt possible interactions with peptide ligands. The modified receptors were expressed in cultured cells and investigated by measuring binding and functional responses. Several receptor residues were found to influence peptide-receptor interactions, some of which are involved in maintaining receptor structure. In a pilot study, the kinetics of peptide-receptor interaction were found to be very slow, of the order several hours. In conclusion, this thesis clarifies evolutionary relationships for the complex NPY and QRFP peptide-receptor systems and improves the structural models of the human NPY-family receptors, especially Y2. These results will hopefully facilitate drug design for targeting of NPY-family receptors.
|
Page generated in 0.0782 seconds