• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 725
  • 176
  • 119
  • 117
  • 62
  • 9
  • 8
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1816
  • 531
  • 443
  • 334
  • 250
  • 231
  • 220
  • 196
  • 193
  • 179
  • 172
  • 166
  • 157
  • 135
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Investigation on Genetic Modifiers of Age at Onset of Major Depressive Disorder

Gedik, Huseyin 01 January 2017 (has links)
Major Depressive Disorder (MDD) is a complex multifactorial disorder, which would lead to disability. Environmental and genetic factors are involved in MDD etiology. The aim of this project was to identify loci modifying age at onset (AAO) of MDD using survival models after adjusting for Childhood Sexual Abuse (CSA). To achieve this aim, a dataset was made available by the China Oxford and VCU Experimental Research on Genetic Epidemiology (CONVERGE) consortium. The study population had 5,220 controls and 5,282 cases with MDD. We performed two univariate association analyses using Cox Proportional Hazard (Cox PH) models. These two are Full Sample (FS), cases and controls, and only the Case Cohort (CC). No genome-wide significant associations were found in univariate analyses. Subsequent gene set enrichment analysis showed that there were significant enrichments in neurological Gene Ontology terms and some novel non-neural pathways. These findings may allow us to better understand MDD pathology.
532

Métagénomique comparative de novo à grande échelle / Large scale de novo comparative metagenomics

Benoit, Gaëtan 29 November 2017 (has links)
La métagénomique comparative est dite de novo lorsque les échantillons sont comparés sans connaissances a priori. La similarité est alors estimée en comptant le nombre de séquences d’ADN similaires entre les jeux de données. Un projet métagénomique génère typiquement des centaines de jeux de données. Chaque jeu contient des dizaines de millions de courtes séquences d’ADN de 100 à 200 nucléotides (appelées lectures). Dans le contexte du début de cette thèse, il aurait fallu des années pour comparer une telle masse de données avec les méthodes usuelles. Cette thèse présente des approches de novo pour calculer très rapidement la similarité entre de nombreux jeux de données. Les travaux que nous proposons se basent sur le k-mer (mot de taille k) comme unité de comparaison des métagénomes. La méthode principale développée pendant cette thèse, nommée Simka, calcule de nombreuses mesures de similarité en remplacement les comptages d’espèces classiquement utilisés par des comptages de grands k-mers (k > 21). Simka passe à l’échelle sur les projets métagénomiques actuels grâce à un nouvelle stratégie pour compter les k-mers de nombreux jeux de données en parallèle. Les expériences sur les données du projet Human Microbiome Projet et Tara Oceans montrent que les similarités calculées par Simka sont bien corrélées avec les similarités basées sur des comptages d’espèces ou d’OTUs. Simka a traité ces projets (plus de 30 milliards de lectures réparties dans des centaines de jeux) en quelques heures. C’est actuellement le seul outil à passer à l’échelle sur une telle quantité de données, tout en étant complet du point de vue des résultats de comparaisons. / Metagenomics studies the genomic content of a sample extracted from a natural environment. Among available analyses, comparative metagenomics aims at estimating the similarity between two or more environmental samples at the genomic level. The traditional approach compares the samples based on their content in known identified species. However, this method is biased by the incompleteness of reference databases. By contrast, de novo comparative metagenomics does not rely on a priori knowledge. Sample similarity is estimated by counting the number of similar DNA sequences between datasets. A metagenomic project typically generates hundreds of datasets. Each dataset contains tens of millions of short DNA sequences ranging from 100 to 150 base pairs (called reads). In the context of this thesis, it would require years to compare such an amount of data with usual methods. This thesis presents novel de novo approaches to quickly compute the similarity between numerous datasets. The main idea underlying our work is to use the k-mer (word of size k) as a comparison unit of the metagenomes. The main method developed during this thesis, called Simka, computes several similarity measures by replacing species counts by k-mer counts (k > 21). Simka scales-up today’s metagenomic projects thanks to a new parallel k-mer counting strategy on multiple datasets. Experiments on data from the Human Microbiome Project and Tara Oceans show that the similarities computed by Simka are well correlated with reference-based and OTU-based similarities. Simka processed these projects (more than 30 billions of reads distributed in hundreds of datasets) in few hours. It is currently the only tool able to scale-up such projects, while providing precise and extensive comparison results.
533

A Bayesian Group Sparse Multi-Task Regression Model for Imaging Genomics

Greenlaw, Keelin 26 August 2015 (has links)
Recent advances in technology for brain imaging and high-throughput genotyping have motivated studies examining the influence of genetic variation on brain structure. In this setting, high-dimensional regression for multi-SNP association analysis is challenging as the brain imaging phenotypes are multivariate and there is a desire to incorporate a biological group structure among SNPs based on their belonging genes. Wang et al. (Bioinformatics, 2012) have recently developed an approach for simultaneous estimation and SNP selection based on penalized regression with regularization based on a novel group l_{2,1}-norm penalty, which encourages sparsity at the gene level. A problem with the proposed approach is that it only provides a point estimate. We solve this problem by developing a corresponding Bayesian formulation based on a three-level hierarchical model that allows for full posterior inference using Gibbs sampling. For the selection of tuning parameters, we consider techniques based on: (i) a fully Bayes approach with hyperpriors, (ii) empirical Bayes with implementation based on a Monte Carlo EM algorithm, and (iii) cross-validation (CV). When the number of SNPs is greater than the number of observations we find that both the fully Bayes and empirical Bayes approaches overestimate the tuning parameters, leading to overshrinkage of regression coefficients. To understand this problem we derive an approximation to the marginal likelihood and investigate its shape under different settings. Our investigation sheds some light on the problem and suggests the use of cross-validation or its approximation with WAIC (Watanabe, 2010) when the number of SNPs is relatively large. Properties of our Gibbs-WAIC approach are investigated using a simulation study and we apply the methodology to a large dataset collected as part of the Alzheimer's Disease Neuroimaging Initiative. / Graduate
534

Comparative Genomics of Aspergillus flavus S and L Morphotypes Yields Insight into Niche Adaption

Ohkura, Mana, Ohkura, Mana January 2017 (has links)
This dissertation consists of three manuscripts for publication: Appendix A presents a genomic comparison of Aspergillus flavus isolates with different morphologies, and Appendices B and C present the identification and systematics of an emerging snake pathogen, Ophidiomyces ophiodiicola. The comparative genomics project of A. flavus tests the hypothesis that isolates with different morphologies within the species are adapted to different niches. Our results reveal differences in genome structure and protein content that are implicated in niche adaptation to the soil and phyllosphere. The systematics project of O. ophiodiicola was initiated to resolve the frequent misidentification of emerging reptilian diseases that is occuring in the literature. One of these emerging pathogens, O. ophiodiicola, was incorrectly described in the genus Chrysosporium due to its resemblance in spore morphology; therefore, the taxonomy of the genus was revised. We hope the review will aid in accurate identification and tracking of emerging reptilian diseases to better understand their epidemiology.
535

Evolinc: A Tool for the Identification and Evolutionary Comparison of Long Intergenic Non-coding RNAs

Nelson, Andrew D. L., Devisetty, Upendra K., Palos, Kyle, Haug-Baltzell, Asher K., Lyons, Eric, Beilstein, Mark A. 09 May 2017 (has links)
Long intergenic non-coding RNAs (lincRNAs) are an abundant and functionally diverse class of eukaryotic transcripts. Reported lincRNA repertoires in mammals vary, but are commonly in the thousands to tens of thousands of transcripts, covering similar to 90% of the genome. In addition to elucidating function, there is particular interest in understanding the origin and evolution of lincRNAs. Aside from mammals, lincRNA populations have been sparsely sampled, precluding evolutionary analyses focused on their emergence and persistence. Here we present Evolinc, a two-module pipeline designed to facilitate lincRNA discovery and characterize aspects of lincRNA evolution. The first module (Evolinc-I) is a lincRNA identification workflow that also facilitates downstream differential expression analysis and genome browser visualization of identified lincRNAs. The second module (Evolinc-II) is a genomic and transcriptomic comparative analysis workflow that determines the phylogenetic depth to which a lincRNA locus is conserved within a user-defined group of related species. Here we validate lincRNA catalogs generated with Evolinc-I against previously annotated Arabidopsis and human lincRNA data. Evolinc-I recapitulated earlier findings and uncovered an additional 70 Arabidopsis and 43 human lincRNAs. We demonstrate the usefulness of Evolinc-II by examining the evolutionary histories of a public dataset of 5,361 Arabidopsis lincRNAs. We used Evolinc-II to winnow this dataset to 40 lincRNAs conserved across species in Brassicaceae. Finally, we show how Evolinc-II can be used to recover the evolutionary history of a known lincRNA, the human telomerase RNA (TERC). These latter analyses revealed unexpected duplication events as well as the loss and subsequent acquisition of a novel TERC locus in the lineage leading to mice and rats. The Evolinc pipeline is currently integrated in CyVerse's Discovery Environment and is free for use by researchers.
536

Molecular Characterisation of the Brassinosteroid, Phytosulfokine and cGMP-dependent Responses in Arabidopsis thaliana

Kwezi, Lusisizwe January 2010 (has links)
Philosophiae Doctor - PhD / In this thesis, we have firstly cloned and expressed the domains that harbours the putative catalytic GC domain in these receptor molecules and demonstrate that these molecules can convert GTP to cGMP in vitro. Secondly, we show that exogenous application of both Phytosulfokine and Brassinosteroid increase changes of intracellular cGMP levels in Arabidopsis mesophyll protoplast demonstrating that these molecules have GC activity in vivo and therefore provide a link as second messenger between the hormones and down-stream responses. In order to elucidate a relationship between the kinase and GC domains of the PSK receptor, we have used the AtPSKR1 receptor as a model and show that it has Serine/Threonine kinase activity using the Ser/Thr peptide 1 as a substrate. In addition, we show that the receptor`s ability to phosphorylate a substrate is affected by the product (cGMP) of its co-domain (GC) and that the receptor autophosphorylates on serine residues and this step was also observed to be affected by cGMP. When Arabidopsis plants are treated with a cell permeable analogue of cGMP, we note that this can affect changes in the phosphoproteome in Arabidopsis and conclude therefore that the cGMP plays a role in kinase-dependent downstream signalling. The obtained results suggest that the receptor molecules investigated here belong to a novel class of GCs that contains both a cytosolic kinase and GC domains, and thus have a domain organisation that is not dissimilar to that of atrial natriuretic peptide receptors NPR1 and NPR2. The findings also strongly suggest that cGMP has a role as a second messenger in both Brassinosteroid and Phytosulfokine signalling. We speculate that other proteins with similar domain organisations may also have dual catalytic activities and that a significant number of GCs, both in plants and animals, remain to be discovered and characterised. / South Africa
537

Characterisation of a susceptibility locus for inflammatory arthritis

Steel, Kathryn Jean Audrey January 2014 (has links)
Inflammatory arthritis (IA) types such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) and psoriatic arthritis (PsA) have been shown to exhibit common clinical features. As complex diseases they have a known genetic component, some of which is known to be shared. The aim of this study was to assess the genetic overlap between 3 types of IA (RA, JIA and PsA) using genotype data generated on the Immunochip array and to select a biologically promising overlapping region for further genetic and functional investigation. Overlap analysis was performed using association data generated for a large cohort of inflammatory arthritis cases and shared controls (11,475 RA; 2816 JIA; 929 PsA respectively). 50 genetic regions were identified as being associated with more than 1 type of IA (p < 1x10-3), with several interesting similarities and differences observed between the diseases. As several of the overlapping regions detected represented novel disease associations, they required replication in an independent sample cohort. 12 variants were selected for replication in an independent RA cohort of 3879 cases and 2561 controls. Of these, 2 variants in the CTLA4 and MTMR3 regions were successfully replicated in RA at p<0.05. Bioinformatics analysis was performed for the 50 overlapping regions, with one particularly promising region, RUNX1, selected for further investigation. In this region, the same variant (rs9979383) is associated across the 3 diseases, with similar odds ratios (OR 0.8-0.9) observed in each disease. As this region represented both a novel IA association and had not been densely genotyped on the Immunochip array, fine mapping was performed by genotyping 51 SNPS in 3491 cases and 2359 controls. This resulted in replication of the association at rs9979383 (p=0.02) with no additional significant genetic effects detected, therefore this variant was selected for further functional analysis. As rs9979383 lies ~280kb upstream of the RUNX1 gene, a cis-eQTL analysis was performed to identify if the variant acts by regulation of RUNX1 gene expression. This was performed in whole blood, CD4+ and CD8+ lymphocytes from 75 (and a subset of 23) healthy volunteers respectively. No significant eQTLs were detected between rs9979383 and RUNX1 in whole blood (p =0.9) or RUNX1/LOC100506403 CD4+ and CD8+ lymphocytes (p=0.1). This study has provided insight into the genetic similarities and differences between different types of inflammatory arthritis, which can be applied to further investigations into disease susceptibility. Although no significant cis-eQTL was detected in any of these tissues with either RUNX1 or the nearby lnc-RNA LOC100506403, in cells from healthy volunteers under unstimulated conditions, these findings will direct future functional investigations into the role of this overlapping region in the susceptibility of IA.
538

Investigating the Origin and Functions of a Novel Small RNA in <i>Escherichia coli</i>

Kacharia, Fenil Rashmin 08 June 2016 (has links)
Non-coding small RNAs (sRNAs) regulate various cellular processes in bacteria. They bind to a chaperone protein Hfq for stability and regulate gene expression by base-pairing with target mRNAs. Although the importance of sRNAs in bacteria has been well established, the mode of origination of novel sRNA genes is still elusive, mainly because the rapid rate of evolution of sRNAs obscures their original sources. To overcome this impediment, we identified a recently formed sRNA (EcsR2) in E. coli, and show that it evolved from a degraded bacteriophage gene. Our analyses also revealed that young sRNAs such as EcsR2 are expressed at low levels and evolve at a rapid rate in comparison to older sRNAs, thereby uncovering a novel process that potentially facilitates newly emerging (and probably mildly deleterious) sRNAs to persist in bacterial genomes. We also show that even though EcsR2 is slightly deleterious to E. coli, it could bind to Hfq and mRNAs to regulate the expression of several genes. Interestingly, while EcsR2 expression is induced by glucose, the expression of its putative targets are regulated by the transcription factor CRP in response to glucose, indicating that EcsR2 has been incorporated into the carbon regulatory network in E. coli. Collectively, this work provides evidence for the emergence, evolution and functions of a novel "young" sRNA in bacteria.
539

G/C tracts and genome instability in Caenorhabditis elegans

Zhao, Yang 11 1900 (has links)
The integrity of the genome is critical to organisms and it is affected by many factors. Radiation, for example, poses a serious threat to genome stability of human beings. While physical monitors for radiation hazard are present, the biological consequences of long term exposure to radiation are not well understood. With the opportunity as part of the International Caenorhabditis elegans Experiment-1 flight project, several approaches using C. elegans were taken to measure mutational changes that occurred during the spaceflight. Among these methods, the eT1 balancer system was demonstrated to be well-suited as an integrating biological dosimeter for spaceflight. The dog-1 gene in C. elegans is required to prevent mutations at poly-G/poly-C tracts, and previous work has described that in the absence of DOG-1, small deletions initiate within these tracts, most likely as a consequence of improperly repaired replication blocks. The eT1 balancer system was adapted to investigate the broad mutational spectrum of dog-1 mutants. Using this system, I was able to determine a forward mutation rate of approximately 1 x 10-3, 10 fold higher than spontaneous. Both small deletions as reported previously and unreported large chromosome rearrangements were observed, and most of mutations analyzed are associated with G/C tracts. Thus, I propose that following dog-1-induced replication blocks, repair leads to a wide range of mutational events and chromosomal instabilities, similar to those seen in human cancers. The existence of the G/C tracts in C. elegans creates a fortuitous but perplexing problem. They are hotspots for genome instability and need enzymatic protection. In the genome of C. elegans, approximately 400 G/C tracts exist and are distributed along every chromosome in a non-random pattern. G/C tracts are also over-represented in another Caenorhabditis species, C. briggsae. However, the positions and distribution differ from those in C. elegans. Furthermore, in C. elegans, analysis of SAGE data showed that the position of the G/C tracts correlated with the level of gene expression. Although being a threat to genome stability, the genomic distribution of G/C tracts in C. elegans and their effect on regional transcription levels suggest a role for G/C tracts in chromatin structure. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
540

Conserved synteny in the genomes of teleost fish aids in the rapid development of genomic tools to query fundamental biological and evolutionary questions

Rondeau, Eric B. 21 December 2017 (has links)
As two species diverge, much of their genomes begin to differentiate. In many lineages, however, the genomic structure remains remarkably intact, with orthologous gene content maintained across millions of years and significant changes to their biological characteristics. The maintenance of gene content is defined as conserved synteny while the preservation of gene order is defined as conserved linkage; the conservation of both can be incredibly informative when interrogating and comparing two genomes. In non-model organisms, linkage conservation to a well-developed model allows informed, cost-effective and rapid answers to fundamental biological questions without generation of equivalent resources. With the development of new model organisms, we can begin to discuss more fundamental evolutionary concepts, such as the maintenance of chromosomal gene content across larger evolutionary time-scales, or the reorganization that occurs in chromosomes following major genomic events such as whole-genome duplications. In this work, I utilized the rapid development of primary genomic resources in the non-model teleost sablefish (Anoplopoma fimbria) to demonstrate that conserved linkage to a model genomic reference can identify the gene most likely responsible for genetic sex-control. I then assembled the first genome for a non-duplicated member of the teleost lineage Protacanthopterygii, the northern pike (Esox lucius), and demonstrated the conservation of synteny between three major lineages of teleosts, the Protacanthopterygii, the Acanthopterygii and the Ostariophysi. I further showed that the genome of northern pike retains an ancestral teleost organization and pre-duplicated genome in comparison to the economically important Salmoniformes. Finally, with continued improvements of the genome to the chromosome level, I demonstrated the degree of conserved linkage maintained between Atlantic salmon and northern pike and explained how conserved linkage through both genomes could be used to improve the genome assembly of the other, even with over 125 million years of separation. As genomic technology continues to advance and new genomic resources become available, the continued refinement of genome re-organization post duplication will be revealed, and this pre-duplication outgroup will continue to push our understanding of the effects of genome duplication, as we transition from genome organization to functional modifications of gene duplicates following duplication. / Graduate / 2018-12-01

Page generated in 0.027 seconds