• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 725
  • 176
  • 119
  • 116
  • 62
  • 9
  • 8
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1814
  • 531
  • 441
  • 334
  • 250
  • 231
  • 219
  • 196
  • 193
  • 179
  • 172
  • 166
  • 157
  • 135
  • 125
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Restriction mapping and expression of recombinant plasmids containing the arsenic resistance genes of the plasmid R45

Coons, Terry M. 01 January 1986 (has links)
The trivalent (arsenite) and pentavalent (arsenate) forms of arsenic are introduced into the environment through the use of arsenic in herbicides, pesticides, fertilizers, and the smelting of arsenic-bearing ores. Bacteria resistant to arsenic are readily isolated from surface waters, sewage, and clinical infections. Although some bacterial resistance is provided by inducible phosphate transport systems that discriminate against arsenate, marked resistance is carried on bacterial plasmids. A 6.9 kilobase fragment previously derived from one such plasmid, R45, and containing the genes for inducible resistance to arsenite and arsenate was ligated into the cloning vectors puce and pUC9 in opposite orientations and transformed into Escherichia coli JM 105. Insertion into the multiple cloning site of the pUC vectors places the inserted fragment under the inducible control of the lac operon promoter. An attempt was made to determine the direction of transcription in the fragment by growth in 10-3 M isopropyl-β-D-thiogalactoside prior to challenge with arsenite.
572

Causes and Consequences of Mitochondrial Variation in Caenorhabditid Nematodes

Hicks, Kiley Ann 01 January 2012 (has links)
Mitochondria are dynamic organelles that harbor their own stream-lined genome and generate much of the ATP necessary to sustain eukaryotic life via an electron transport chain (ETC). Because of the central role for mitochondria in organismal physiology, mitochondrial genetic and phenotypic variation can alter organismal fitness and affect population genetic and evolutionary outcomes. Despite the far-reaching relevance of mitochondria to evolutionary processes and human health, we lack a basic understanding of the causes and consequences of mitochondrial genetic and phenotypic variation. In this thesis, I quantified mitochondrial reactive oxygen species (ROS), membrane potential (δΨM), and mitochondrial morphological traits within Caenorhabditis briggsae natural isolates and mutation-accumulation (MA) lines of both C. briggsae and Caenorhabditis elegans. Substantial natural variation was discovered for most mitochondrial form and function traits measured for a set of C. briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5δ) that correlates negatively with organismal fitness. Most among-isolate phenotypic variation could be accounted for by phylogeographic clade membership rather than nad5δ level. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. An MA experimental approach revealed that average levels of both ROS and nad5δ heteroplasmy evolved in remarkably linear ways in C. briggsae maintained under extreme inbreeding. In particular, among C. briggsae isolates prone to acquiring the nad5δ deletion, nad5δ level increased to a plateau of ~50% during successive generations of MA treatment. Conversely, mitochondrial ROS level increased or declined in a strain-specific fashion, which also meant that the relationship between ROS and nad5δ was strain-specific. Further, all lines generated from the isolate with the highest starting level of nad5δ heteroplasmy went extinct prior to generation 20 of MA treatment. Patterns of among-line variance in ROS level were also strain-specific but generally did not conform to the canonical pattern of increasing among-line variance expected for MA experiments. MA lines of C. elegans that had previously been subjected to whole-genome sequencing were found to vary significantly in ROS levels but not in 8-oxo-dG content. Despite a significant positive correlation between 8-oxo-dG and ROS levels, no relationship between oxidative stress measures and base substitution rate or G-to-T transversion rate was revealed. Finally, analysis of patterns of phenotypic correlation for a suite of 24 mitochondrial traits measured in C. briggsae natural isolates support a role for ΔΨM in shaping mitochondrial dynamics, but no such role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity. This work identifies extensive natural variation and capacity for evolution in organellar traits within multicellular eukaryotic species, with a central role for δΨM in mitochondrial dynamics that may have implications for evolutionary adaptation to thermal niches.
573

Integrative Computational Genomics Based Approaches to Uncover the Tissue-Specific Regulatory Networks in Development and Disease

Srivastava, Rajneesh 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Regulatory protein families such as transcription factors (TFs) and RNA Binding Proteins (RBPs) are increasingly being appreciated for their role in regulating the respective targeted genomic/transcriptomic elements resulting in dynamic transcriptional (TRNs) and post-transcriptional regulatory networks (PTRNs) in higher eukaryotes. The mechanistic understanding of these two regulatory network types require a high resolution tissue-specific functional annotation of both the proteins as well as their target sites. This dissertation addresses the need to uncover the tissue-specific regulatory networks in development and disease. This work establishes multiple computational genomics based approaches to further enhance our understanding of regulatory circuits and decipher the associated mechanisms at several layers of biological processes. This study potentially contributes to the research community by providing valuable resources including novel methods, web interfaces and software which transforms our ability to build high-quality regulatory binding maps of RBPs and TFs in a tissue specific manner using multi-omics datasets. The study deciphered the broad spectrum of temporal and evolutionary dynamics of the transcriptome and their regulation at transcriptional and post transcriptional levels. It also advances our ability to functionally annotate hundreds of RBPs and their RNA binding sites across tissues in the human genome which help in decoding the role of RBPs in the context of disease phenotype, networks, and pathways. The approaches developed in this dissertation is scalable and adaptable to further investigate the tissue specific regulators in any biological systems. Overall, this study contributes towards accelerating the progress in molecular diagnostics and drug target identification using regulatory network analysis method in disease and pathophysiology.
574

Developing Bottom-Up, Integrated Omics Methodologies for Big Data Biomarker Discovery

Kechavarzi, Bobak David 11 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The availability of highly-distributed computing compliments the proliferation of next generation sequencing (NGS) and genome-wide association studies (GWAS) datasets. These data sets are often complex, poorly annotated or require complex domain knowledge to sensibly manage. These novel datasets provide a rare, multi-dimensional omics (proteomics, transcriptomics, and genomics) view of a single sample or patient. Previously, biologists assumed a strict adherence to the central dogma: replication, transcription and translation. Recent studies in genomics and proteomics emphasize that this is not the case. We must employ big-data methodologies to not only understand the biogenesis of these molecules, but also their disruption in disease states. The Cancer Genome Atlas (TCGA) provides high-dimensional patient data and illustrates the trends that occur in expression profiles and their alteration in many complex disease states. I will ultimately create a bottom-up multi-omics approach to observe biological systems using big data techniques. I hypothesize that big data and systems biology approaches can be applied to public datasets to identify important subsets of genes in cancer phenotypes. By exploring these signatures, we can better understand the role of amplification and transcript alterations in cancer.
575

Binary Classification With First Phase Feature Selection forGene Expression Survival Data

Loveless, Ian 28 August 2019 (has links)
No description available.
576

Bayesian Variable Selection for High-Dimensional Data with an Ordinal Response

Zhang, Yiran January 2019 (has links)
No description available.
577

Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae)

Otero Bravo, Alejandro 29 September 2020 (has links)
No description available.
578

Understanding Microbial Biodegradation of Environmental Contaminants

Vilo Muñoz, Claudia Andrea 05 1900 (has links)
The accumulation of industrial contaminants in the natural environments have rapidly become a serious threat for human and animal life. Fortunately, there are microorganisms capable of degrading or transforming environmental contaminants. The present dissertation work aimed to understand the genomic basis of microbial degradation and resistance. The focus was the genomic study of the following bacteria: a) Pseudomonas fluorescens NCIMB 11764, a unique bacterium with specific enzymes that allow cyanide adaptation features. Potential cyanide degradation mechanisms found in this strain included nit1C cluster, and CNO complex. Potential cyanide tolerance genes found included cyanide insensitive oxidases, nitric oxide producing gene, and iron metabolism genes. b) Cupriavidus sp. strain SK-3 and strain SK-4. The genome of both bacteria presented the bph operon for polychlorinated biphenyl (PCB) degradation, but we found differences in the sequences of the genes. Those differences might indicate their preferences for different PCB substrates. c) Arsenic resistant bacterial communities observed in the Atacama Desert. Specific bacteria were found to thrive depending on the arsenic concentration. Examples were Bacteroidetes and Spirochaetes phyla whose proportions increased in the river with high arsenic concentrations. Also, DNA repair and replication metabolic functions seem to be necessary for resistance to arsenic contaminated environments. Our research give us insights on how bacteria communities, not just individually, can adapt and become resistant to the contaminants. The present dissertation work showed specific genes and mechanisms for degradation and resistance of contaminants that could contribute to develop new bioremediation strategies.
579

Identification and isolation of hematopoietic stem and progenitor cells with discrete developmental gene expression programs

Ferchen, Kyle 02 June 2023 (has links)
No description available.
580

Awareness of Genetic Predispositions that Increase the Risk of Breast Cancer

Huber, Carly 01 January 2021 (has links)
Breast cancer is the most commonly diagnosed cancer in women in the United States and is the leading cause of cancer-related death among women worldwide. Certain demographics, such as racial/ethnic, age, and gender groups, are underrepresented in breast cancer studies. This lack of representation results in issues with creating genetic tests, as variants associated with those groups are not being detected. Furthermore, these underrepresented demographics are receiving a worse prognosis than those that are overrepresented in research. This study aimed to understand how informed the understudied racial/ethnic, gender, and age populations are regarding breast cancer and genetic testing compared to populations that have been abundantly studied, and the factors affecting the decision to receive genetic testing between gender groups. After distributing a survey to students at the University of Central Florida, the study found that females answered the knowledge-based questions more accurately than males; however, no significant differences were found between age or ethnicity groups. This is likely due to the sample consisting of university students who are more knowledgeable than the general population. The study found a negative correlation between gender and the influence of individual health concerns on receiving genetic testing and how often a breast self-exam is performed. A difference was also found between gender, age, and ethnic groups on having performed a breast self-exam. Further investigations should sample from a general population or other university populations for comparison. Also, increased education on breast cancer risks, performing a breast self-exam, and receiving genetic testing would be beneficial for early detection of breast cancer.

Page generated in 0.028 seconds