• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational analysis of gene regulatory networks

Hache, Hendrik 23 December 2009 (has links)
Genregulation bezeichnet die geregelte Steuerung der Genexpression durch das Zusammenspiel einer Vielzahl von Transkriptionsfaktoren die in ihrer Gesamtheit hoch komplexe und zell-spezifische genregulatorische Netzwerke bilden. Im Rahmen meiner Arbeit beschäftigte ich mich mit zwei Ansätzen der computergestützten Analyse solcher Netzwerke, Modellierung und Reverse Engineering. Der erste Teil meiner Arbeit beschreibt die Entwicklung der Web-Anwendung GEne Network GEnerator (GeNGe). Hierbei handelt es sich um ein System für die automatische Erzeugung von genregulatorischen Netzwerken. Hierfür entwickelte und implementierte ich einen neuartigen Algorithmus für die Generierung von Netzwerkstrukturen die wichtige Eigenschaften biologischer Netzwerke zeigen. Für die dynamische Beschreibung der Transkription modifizierte ich eine nicht-lineare Kinetik. Diese neue Formulierung der Kinetik eignet sich besonders für die Erstellung von komplexen genregulatorischen Modellen am Computer. Desweiteren unterstützt GeNGe die Durchführung verschiedener in silico Experimente, um theoretische Aussagen über den Einfluss von Störungen des Systems treffen zu können. Der zweite Teil meiner Arbeit beschreibt die Entwicklung von GNRevealer. Es handelt sich hierbei um eine Methode zur Rekonstruktion von genregulatorischen Netzwerken auf Basis zeitdiskreter Messungen der Genexpression. Diese Methode verwendet ein neuronales Netz zusammen mit einem passenden Lernalgorithmus (backpropagation through time). Modifizierungen, welche notwendig für die Anwendung im Reverse Engineering Bereich sind, wurden von mir entwickelt, wie z.B. die Etablierung eines vollständigen Lernprozesses, die Diskretisierung der Ergebnisse und anschließende Validierungen. Im letzten Teil dieser Arbeit beschreibe ich eine Studie, in der sechs verschiedene Reverse Engineering Anwendungen von mir miteinander verglichen wurden. Diese Untersuchung hebt GNRevealer als geeignetste Anwendung aller getesteten Methoden hervor. / Gene regulation is accomplished mainly by the interplay of multiple transcription factors. This gives rise to highly complex and cell-type specific, interwoven structures of regulatory interactions summarized in gene regulatory networks. In this thesis, I address two approaches of computational analysis of such networks, forward modeling and reverse engineering. The first part of this thesis is about the Web application GEne Network GEnerator (GeNGe) which I have developed as a framework for automatic generation of gene regulatory network models. I have developed a novel algorithm for the generation of network structures featuring important biological properties. In order to model the transcriptional kinetics, I have modified an existing non-linear kinetic. This new kinetic is particularly useful for the computational set-up of complex gene regulatory models. GeNGe supports also the generation of various in silico experiments for predicting effects of perturbations as theoretical counterparts of biological experiments. Moreover, GeNGe facilitates especially the collection of benchmark data for evaluating reverse engineering methods. The second part of my thesis is about the development of GNRevealer, a method for reverse engineering of gene regulatory networks from temporal data. This computational approach uses a neural network together with a sophisticated learning algorithm (backpropagation through time). Specialized features developed in the course of my thesis include essential steps in reverse engineering processes such as the establishment of a learning workflow, discretization, and subsequent validation. Additionally, I have conducted a large comparative study using six different reverse engineering applications based on different mathematical backgrounds. The results of the comparative study highlight GNRevealer as best performing method among those under study.
2

Experimental and theoretical analysis of X-chromosome inactivation as a paradigm for epigenetic memory and molecular decision-making

Mutzel, Verena 19 October 2021 (has links)
X-Chromosom-Inaktivierung (XCI) ist der Mechanismus, den Säuger zur Dosiskompensierung zwischen weiblichen und männlichen Zellen verwenden. XCI wird ausgelöst durch die monoallelische Hochregulation der langen nicht-kodierenden RNA Xist von einem der zwei X-Chromosomen in weiblichen Zellen. Die Xist RNA vermittelt dann das Ausschalten der Gene auf diesem X-Chromosom. Das wirft einige interessante Fragen auf: Wie zählen Zellen ihre X-Chromosomen und stellen sicher, dass genau eines aktiv bleibt? Wie entscheiden sie, welches X-Chromosom aktiv bleibt und welches ausgeschaltet wird? Und wie erinnern sie sich an diese Entscheidung und behalten sie stabil bei durch alle weiteren Zellteilungen? Mithilfe eines stochastischen Modells zeigen wir, dass diese XCI Regulation prinzipiell durch nur zwei Regulatoren erklärt werden kann: Ein global (in trans) agierender XCI Aktivator und ein lokal (in cis) agierender XCI Repressor. Dieses Netzwerk aus nur zwei Regulatoren kann die Xist Expressionsmuster in verschiedenen Säugerspezies reproduzieren, von der Maus bis zum Mensch. Es sagt außerdem voraus, dass Zellen in der Lage sind, biallelische zu monoallelischer Xist Expression zu korrigieren, eine Vorhersage, für die wir tatsächlich experimentelle Belege finden. Mit einem mechanistischen Modell zeigen wir, dass das cis-Gedächtnis über den Xist Expressionszustand durch Antisense-Transkription zustande kommen könnte. Auf dieser Hypothese aufbauend untersucht der zweite Teil der Arbeit das Potential von Antisense-Transkription, ein lokales Gedächtnis über den Expressionszustand eines Gens zu generieren, genauer. Diese Analyse sagt vorher, dass Antisense-Repression den Expressionszustand eines Lokus tatsächlich für einige Tage stabil erhalten kann. / X-chromosome inactivation (XCI) is the mechanism for dosage compensation between the sexes in mammals. It is initiated through monoallelic upregulation of the long non-coding RNA Xist from one X chromosome, which mediates almost complete transcriptional silencing of this X chromosome. XCI regulation raises intriguing and thus far unanswered questions: How do cells count their X chromosomes and ensure that exactly one stays active? How do they make a mutually exclusive choice for one inactive X chromosome, and how do they then stably maintain this choice throughout subsequent cell divisions? Using stochastic modeling, we show that XCI onset only requires two regulators: A trans-acting Xist activator that ensures female specificity and a cis-acting Xist repressor that allows stable maintenance of alternative Xist expression states. This two-regulator network can recapitulate Xist expression patterns across different species and makes a novel prediction that is validated experimentally: Cells are able to revert biallelic Xist expression to monoallelic expression. With a mechanistic stochastic model we show that Xist's antisense transcript Tsix might be the cis-acting Xist repressor, uncovering the molecular mechanism behind the stabilization of the alternative Xist expression states. Building upon Tsix' possible functional role in stabilizing alternative Xist expression states on the active and inactive X chromosome, the second part of this thesis investigates the potential of antisense transcription to maintain a transient transcriptional memory. We find that mutual repression between a pair of antisense genes can allow the locus to remember the transcription state it has acquired due to a past signal for several days.

Page generated in 0.0553 seconds