• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 21
  • Tagged with
  • 43
  • 23
  • 22
  • 15
  • 15
  • 15
  • 15
  • 15
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Gene expression in brains from red jungle fowl (Gallus gallus) that differ in fear response

Jöngren, Markus January 2008 (has links)
<p>The fear response of two different captive populations of red jungle fowl (rjf, Gallus gallus) was measured in three different tests, a ground predator test, an aerial predator test and a tonic immobility test. The two populations originated from Copenhagen zoo (Cop) and Götala research station (Got) but had been kept together for four generations. Earlier generations had a confirmed difference in fearfulness where the Cop birds exhibited a higher degree of fear response than Got birds (Håkansson and Jensen, 2005; Håkansson et al., 2007). The most and least fearful birds of each sex and population were identified and used in a gene expression study. The midbrain regions from the candidate birds were collected and RNA was isolated from each brain. The RNA was then reversed transcribed to cDNA which was used in a cDNA microarray experiment. 13 significantly differentially expressed genes were found between the fearful and non-fearful females. Among others were the neuroprotein Axin1, two potential DNA/RNA regulating proteins and an unknown transcript in the Quantitative Trait Locus 1(QTL 1), a well studied QTL on chromosome one with substantial effect on both behaviour and morphology during domestication (Schütz et al., 2002). This thesis succeeds in finding a difference in gene expression between fearful and non fearful female rjf but not between males. It fails in identifying gene expression differences between the two populations. Finally, the found differentiated genes suggest a potential molecular mechanism controlling the fear response in fowl.</p>
22

Patentering av gener och delsekvenser av gener / Patenting Genes and Gene Sequences

Björkholm, Jenny January 2002 (has links)
<p>Det gåratt patentera gener och delsekvenser av gener i Sverige. Reglerna som rör patentering av gener finns i EG:s bioteknikdirektiv, i den svenska patentlagen och i patentkungörelsen. Ett patent på en gen innebär att patenthavaren får en ensamrätt till att kommersiellt använda genen, eller delsekvensen av genen, den produkt den kodar för, eller förfarandet för att få fram och tillverka produkten. Det finns begränsningar för vilka gener, delsekvenser av gener och genetiska förfarande som får patenteras. Uppsatsen behandlar vidare frågan om skillnader mellan klassiska patent och patent på gener, och delsekvenser av gener. Liksom för klassiska patent gäller att endast uppfinningar kan patenteras. Denna måste sedan uppfylla de sedvanliga tre patentkraven; nyhetskravet, kravet på uppfinningshöjd och kravet på industriell tillämpbarhet. Kravet på industriell tillämpbarhet i samband med genteknik är viktigt och har särskilt betonats i direktivet. Andra frågor som är specifika för biotekniska patent hör samman med deras möjlighet att reproducera sig själva. Det är t.ex. osäkert hur mycket en reproducerad produkt får avvika från den patenterade uppfinningen innan patentskyddet upphör. Förmågan att reproducera sig själva gör att vissa av de patenterade uppfinningarna kan förflytta sig, själva eller med naturens hjälp. Det finns dock inga regler om hur patentintrång skall bedömas när den patenterade uppfinningen har förflyttat sig själv.</p>
23

Gene expression in brains from red jungle fowl (Gallus gallus) that differ in fear response

Jöngren, Markus January 2008 (has links)
The fear response of two different captive populations of red jungle fowl (rjf, Gallus gallus) was measured in three different tests, a ground predator test, an aerial predator test and a tonic immobility test. The two populations originated from Copenhagen zoo (Cop) and Götala research station (Got) but had been kept together for four generations. Earlier generations had a confirmed difference in fearfulness where the Cop birds exhibited a higher degree of fear response than Got birds (Håkansson and Jensen, 2005; Håkansson et al., 2007). The most and least fearful birds of each sex and population were identified and used in a gene expression study. The midbrain regions from the candidate birds were collected and RNA was isolated from each brain. The RNA was then reversed transcribed to cDNA which was used in a cDNA microarray experiment. 13 significantly differentially expressed genes were found between the fearful and non-fearful females. Among others were the neuroprotein Axin1, two potential DNA/RNA regulating proteins and an unknown transcript in the Quantitative Trait Locus 1(QTL 1), a well studied QTL on chromosome one with substantial effect on both behaviour and morphology during domestication (Schütz et al., 2002). This thesis succeeds in finding a difference in gene expression between fearful and non fearful female rjf but not between males. It fails in identifying gene expression differences between the two populations. Finally, the found differentiated genes suggest a potential molecular mechanism controlling the fear response in fowl.
24

Metoder och tillämpningar av CRISPR-Cas9 i cancerforskning. : Samt hur CRISPR-Cas9 kan implementeras i skolundervisningen. / Methods and applications of CRISPR-Cas9 in cancer research. : – And how CRISPR-Cas9 can be applied in teaching.

Valladares, Rodrigo, Briheim, Hanna January 2020 (has links)
CRISPR-Cas9 är ett effektivt genredigeringsverktyg som har upptäckts på senare år. Verktyget härstammar från ett adaptivt immunförsvar hos prokaryoter. Tekniken används för att modifiera DNA hos växter, djur och människor på ett enkelt och billigt sätt. CRISPR-Cas9 har visat sig ha stor potential vid bekämpning av olika sjukdomar däribland cancer som idag är ett globalt hälsoproblem. Inom cancerforskningen ses CRISPR-Cas9 som ett lovande verktyg vid cancerterapi och läkemedelsutveckling. I denna studie sammanställer vi aktuella metoder och användningsområden med CRISPR-Cas9 inom cancerforskning. Dessutom undersöker vi hur denna form av genteknik kan lyftas upp och tillämpas i biologiundervisningen. / CRISPR-Cas9 has recently emerged as an effective genome editing tool. The tool derives from an adaptive immune system in prokaryotes. The technology is used for modification of DNA in plants, animals and humans in a simple and inexpensive way. CRISPR-Cas9 has shown great potential in fighting different diseases like cancer which today is a global health issue. It is seen as a promising tool for cancer research when it comes to cancer therapy and drug development. Here we summarize current methods and applications of CRISPR-Cas9 for cancer research. Furthermore, we explore the possibilities of introducing and applying this kind of genetic engineering in biology teaching. / <p>Framläggning, opponering och respondering skedde skriftligt till följd av covid19.</p>
25

GEN- ETIK hur den nya biologins etik hanteras av gymnasielärare och läroböcker GENE-ETHICS - How the ethics of the new biology are handled by teachers and textbooks

Svensson, Karin January 2012 (has links)
No description available.
26

TARP Promoter-Based Prostate Cancer Gene Therapy : From Development to Application

Cheng, Wing-Shing January 2005 (has links)
<p>Prostate cancer is one leading cause of cancer-related death among men in Western countries. The standard therapies for localized prostate cancer include radical prostatectomy and radiation therapy. Such measures are relatively effective in the short term, but many patients ultimately relapse. These patients may benefit from a combination of standard therapy and oncolytic virus therapy. My work aimed to develop viruses for this purpose.</p><p>TARP is a protein that in males is specifically expressed in prostate epithelial and cancer cells. In my thesis, I characterized the TARP promoter and showed that TARP expression is regulated at the transcriptional level by testosterone through binding of the androgen receptor in the proximal TARP promoter. I further developed TARP promoter-based regulatory sequences for prostate-specific gene expression. A sequence comprising a PSA enhancer, a PSMA enhancer and the TARP promoter was constructed and designated PPT. An adenoviral vector containing the PPT sequence shielded from transcriptional interference by an H19 insulator showed high prostate-specific transcriptional activity in human cells both in the presence and absence of testosterone. However, in experimental murine prostate cancer the PPT sequence is not active. Therefore, a two-step transcriptional amplification (TSTA) system was used together with the PPT sequence to develop an adenovirus that confers prostate-specific transgene expression also in murine cells.</p><p>I constructed a conditionally replicating adenovirus where the E1A gene expression is controlled by an H19 insulator-shielded PPT regulatory sequence, Ad[I/PPT-E1A]. This virus exhibited absolute prostate specificity in terms of E1A expression, viral replication and cytolysis <i>in vitro</i> and <i>in vivo</i>. Importantly, our virus is active both in the presence and absence of testosterone, which may prove beneficial for patients treated by hormonal withdrawal. </p><p>Hopefully, my work will improve existing gene therapy strategies for prostate cancer and in the long term improve the prognosis for patients with prostate cancer.</p>
27

TARP Promoter-Based Prostate Cancer Gene Therapy : From Development to Application

Cheng, Wing-Shing January 2005 (has links)
Prostate cancer is one leading cause of cancer-related death among men in Western countries. The standard therapies for localized prostate cancer include radical prostatectomy and radiation therapy. Such measures are relatively effective in the short term, but many patients ultimately relapse. These patients may benefit from a combination of standard therapy and oncolytic virus therapy. My work aimed to develop viruses for this purpose. TARP is a protein that in males is specifically expressed in prostate epithelial and cancer cells. In my thesis, I characterized the TARP promoter and showed that TARP expression is regulated at the transcriptional level by testosterone through binding of the androgen receptor in the proximal TARP promoter. I further developed TARP promoter-based regulatory sequences for prostate-specific gene expression. A sequence comprising a PSA enhancer, a PSMA enhancer and the TARP promoter was constructed and designated PPT. An adenoviral vector containing the PPT sequence shielded from transcriptional interference by an H19 insulator showed high prostate-specific transcriptional activity in human cells both in the presence and absence of testosterone. However, in experimental murine prostate cancer the PPT sequence is not active. Therefore, a two-step transcriptional amplification (TSTA) system was used together with the PPT sequence to develop an adenovirus that confers prostate-specific transgene expression also in murine cells. I constructed a conditionally replicating adenovirus where the E1A gene expression is controlled by an H19 insulator-shielded PPT regulatory sequence, Ad[I/PPT-E1A]. This virus exhibited absolute prostate specificity in terms of E1A expression, viral replication and cytolysis in vitro and in vivo. Importantly, our virus is active both in the presence and absence of testosterone, which may prove beneficial for patients treated by hormonal withdrawal. Hopefully, my work will improve existing gene therapy strategies for prostate cancer and in the long term improve the prognosis for patients with prostate cancer.
28

Fantastiskt eller vidrigt? : Uppfattningar om genmodifierad mat

Asplund, Therese January 2008 (has links)
No description available.
29

Analysis of genetic relatedness using DNA microarrays

Welander, Jenny January 2009 (has links)
<p>Analysis of genetic relatedness is of great importance in forensic casework such as immigration and identification cases. The conventional methods for relationship testing are not sufficient in the most complicated cases, because more genetic markers are required to obtain results with satisfactory statistical security. This study demonstrates that microarrays, which can be used to genotype thousands of single nucleotide polymorphisms (SNPs), could be a promising solution to this problem. The microarray technique used in this study performed very well on blood samples and also worked well in combination with whole genome amplification, but did not generate any results when used on severely degraded materials.</p><p>Markers suitable for relatedness analysis were selected from the microarray and were successfully tested on families with known genetic relations. Although a maximum of 64 autosomal markers were used, there is a great potential of selecting the hundreds or thousands of markers that may be required in some cases of relatedness investigation.</p>
30

Mining the transcriptome - methods and applications

Wirta, Valtteri January 2006 (has links)
Regulation of gene expression occupies a central role in the control of the flow of genetic information from genes to proteins. Regulatory events on multiple levels ensure that the majority of the genes are expressed under controlled circumstances to yield temporally controlled, cell and tissue-specific expression patterns. The combined set of expressed RNA transcripts constitutes the transcriptome of a cell, and can be analysed on a large-scale using both sequencing and microarray-based methods. The objective of this work has been to develop tools for analysis of the transcriptomes (methods), and to gain new insights into several aspects of the stem cell transcriptome (applications). During recent years expectations of stem cells as a resource for treatment of various disorders have emerged. The successful use of endogenously stimulated or ex vivo expanded stem cells in the clinic requires an understanding of mechanisms controlling their proliferation and self-renewal. This thesis describes the development of tools that facilitate analysis of minute amounts of stem cells, including RNA amplification methods and generation of a cDNA array enriched for genes expressed in neural stem cells. The results demonstrate that the proposed amplification method faithfully preserves the transcript expression pattern. An analysis of the feasibility of a neurosphere assay (in vitro model system for study of neural stem cells) clearly shows that the culturing induces changes that need to be taken into account in design of future comparative studies. An expressed sequence tag analysis of neural stem cells and their in vivo microenvironment is also presented, providing an unbiased large-scale screening of the neural stem cell transcriptome. In addition, molecular mechanisms underlying the control of stem cell self-renewal are investigated. One study identifies the proto-oncogene Trp53 (p53) as a negative regulator of neural stem cell self-renewal, while a second study identifies genes involved in the maintenance of the hematopoietic stem cell phenotype. To facilitate future analysis of neural stem cells, all microarray data generated is publicly available through the ArrayExpress microarray data repository, and the expressed sequence tag data is available through the GenBank. / QC 20100927

Page generated in 0.0392 seconds