• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A label-free, fluorescence based assay for microarray

Niu, Sanjun 23 August 2004 (has links)
DNA chip technology has drawn tremendous attention since it emerged in the mid 90 s as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges.. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same intensity of excitation light.. The fluorescence contrast is used to quantify the amount of probe-target hybridization. A mathematical model that considers multiple reflections and scattering is developed to explain the mechanism of the fluorescence contrast which depends on the thickness of the PS film. Scattering is the dominant factor that contributes to the contrast. The potential of this assay to detect single nucleotide polymorphism is also tested. / Ph. D.
2

DNA chips with conjugated polyelectrolytes as fluorophore in fluorescence amplification mode

Magnusson, Karin January 2008 (has links)
The aim of this diploma work is to improve selectivity and sensitivity in DNA-chips by utilizing fluorescence resonance energy transfer (FRET) between conjugated polyelectrolytes (CPEs) and fluorophores. Leclerc and co-workers have presented successful results from studies of super FRET between fluorophore tagged DNA and a CPE during hybridisation of the double strand. Orwar and co-workers have constructed a DNA-chip using standard photo lithography creating a pattern of the hydrophobic photoresist SU-8 and cholesterol tagged DNA (chol-DNA). This diploma work will combine and modify these two ideas to fabricate a improved DNA-chip. Immobilizing of DNA onto surface has been done by using soft lithography. Hydrophobic pattern arises from the poly(dimethylsiloxane) (PDMS) stamp. The hydrophobic pattern will attract chol-DNA that is adsorbed to the chip. Different sets of fluorophores are covalently bound to the DNA and adding CPEs to the complex will make FRET occur between CPE and bound fluorophore. We will here show that the specificity in DNA hybridization by using PDMS patterning was high. FRET clearly occurred, especially with the CPEs as donor to the fluorophore Cy5. The intensity of FRET was higher when the fluorophore and the CPE were conjugated to the same DNA strand. The largest difference in FRET intensity between double stranded and single stranded complexes was observed with the CPE tPOMT. Super FRET has been observed but not yet fully proved. The FRET efficiency was lower with the fluorophore Alexa350 as donor compared to the Cy5/CPE complex. Most of the energy transferred from Alexa350 was extinguished by quenching.
3

Development Of An Oligonucleotide Based Sandwich Array Platform For The Detection Of Transgenic Elements From Plant Sources Using Label-free Pcr Products

Gul, Fatma 01 October 2010 (has links) (PDF)
Advances in DNA micro and macroarray technologies made these high-throughput systems good candidates for the development of cheaper, faster and easier qualitative and quantitative detection methods. In this study, a simple and cost effective sandwich hybridization-based method has been developed for the rapid and sensitive detection of various unmodified recombinant elements in transgenic plants. Attention was first focused on the optimization of conditions such as time, concentration and temperature using commercial ssDNA, which in turn could be used for real sample detection. In this sandwich-type DNA chip platform, capture probes complementary to the first half of recombinant element (target adapter) were immobilized onto poly-L-lysine covered conventional microscope slides. PCR-amplified un-purified target adapter and biotin labeled detection probe, which is complementary to the second half of target adapter, were hybridized in solution-phase to complementary capture probes to create a sandwiched tripartite complex. Later, hybridization signal was visualized by the attachment of streptavidin conjugated Quantum Dot to the sandwiched complex under UV illumination. Sandwich based array system that has been developed in this study allows multiplex screening of GMO events on a single DNA chip platform. 35S promoter, NOS terminator, CRY1Ab and BAR target sequences were successfully detected on the same DNA chip platform. The platform was able to detect unlabeled PCR amplified DNA fragments of CaMV 35S promoter sequence and NOS terminator and BAR transgene sequences from transgenic potato plants and NK603 Certified GMO Reference material, respectively. The DNA-chip platform developed in this study will allow multiple detection of label-free PCR-amplified transgenic elements from real GMO samples on a single slide via a cost effective, fast, reliable and sensitive sandwich hybridization assay.
4

DNA chips with conjugated polyelectrolytes as fluorophore in fluorescence amplification mode

Magnusson, Karin January 2008 (has links)
<p>The aim of this diploma work is to improve selectivity and sensitivity in DNA-chips by utilizing fluorescence resonance energy transfer (FRET) between conjugated polyelectrolytes (CPEs) and fluorophores.</p><p>Leclerc and co-workers have presented successful results from studies of super FRET between fluorophore tagged DNA and a CPE during hybridisation of the double strand. Orwar and co-workers have constructed a DNA-chip using standard photo lithography creating a pattern of the hydrophobic photoresist SU-8 and cholesterol tagged DNA (chol-DNA). This diploma work will combine and modify these two ideas to fabricate a improved DNA-chip.</p><p>Immobilizing of DNA onto surface has been done by using soft lithography. Hydrophobic pattern arises from the poly(dimethylsiloxane) (PDMS) stamp. The hydrophobic pattern will attract chol-DNA that is adsorbed to the chip. Different sets of fluorophores are covalently bound to the DNA and adding CPEs to the complex will make FRET occur between CPE and bound fluorophore.</p><p>We will here show that the specificity in DNA hybridization by using PDMS patterning was high. FRET clearly occurred, especially with the CPEs as donor to the fluorophore Cy5. The intensity of FRET was higher when the fluorophore and the CPE were conjugated to the same DNA strand. The largest difference in FRET intensity between double stranded and single stranded complexes was observed with the CPE tPOMT. Super FRET has been observed but not yet fully proved. The FRET efficiency was lower with the fluorophore Alexa350 as donor compared to the Cy5/CPE complex. Most of the energy transferred from Alexa350 was extinguished by quenching.</p>
5

Impacto do lodo de esgoto na comunidade bacteriana do solo: avaliação por microarranjo de DNA

Val-Moraes, Silvana Pompéia do [UNESP] 31 March 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-31Bitstream added on 2014-06-13T18:44:29Z : No. of bitstreams: 1 moraes_spv_dr_jabo.pdf: 948711 bytes, checksum: 46e44d8c0ba3f6d9eccf238a5207cfc2 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O lodo de esgoto tem sido utilizado como fertilizante orgânico em substituição ao fertilizante químico. O objetivo deste estudo foi avaliar o efeito de lodo de esgoto, oriundo da Estação de Tratamento de Barueri em São Paulo, sobre a população bacteriana do solo através da análise de microarranjo de DNA. Os tratamentos foram sem adição e com adição de lodo de esgoto, sendo este adicionado em quantidades equivalentes a uma e a oito vezes a dose de Nitrogênio mineral recomendada para o cultivo de milho. As amostras de solo foram coletadas no Campo Experimental da Embrapa Meio Ambiente, em Jaguariúna (SP), em áreas que já vem sofrendo aplicações de lodo similar por 5 anos. As coletas foram feitas seis dias antes da aplicação do lodo, época referente ao final da primavera; e 67 dias após a aplicação do lodo, época referente ao final do verão e antecedente ao plantio do milho. Para a análise da comunidade bacteriana foi construído um microarranjo ambiental em lâmina de vidro contendo 1560 seqüências parciais do gene 16S rRNA de procariotos. Avaliaram-se também os teores totais P, Cu, Fe, Mn, Zn e S acumulados nos solos após a aplicação do lodo. A técnica de microarranjo foi eficiente para avaliar as alterações na comunidade bacteriana. E pode ser observada uma grande variação na população de bactéria, principalmente nos solos tratados com altas doses de lodo. / Sewage sludge has been used as organic fertilizers to replace in substitution chemical fertilizer. The objective of this study was to evaluate the effect of sewage sludge from the Station of Treatment of Barueri São Paulo State on the structure of the bacterial communities through DNA microarray analysis. The treatments were without addition sewage sludge and an N supply to one and eight times the dose of N recommended for mineral fertilization in maize. Soil samples were collected on Experimental Area of the Embrapa Environment, in Jaguariúna, São Paulo State, at the end of the spring, six days before sewage sludge application and at the end of the summer, 67 days after the treatment applications), before the maize plantation. In order to analyze bacterial communities it was constructed a glass slide microarray environmental with 1.560 partial sequences of the gene 16S rRNA from prokaryotes that have been the majority different and from bacteria. The total contents of Cu, Mn, Ni, Pb and Zn accumulated in the soil after sewage sludge application was evaluated through out chemical analyses. Great variation in the bacterial population was found, mainly in the soil treated with the higher dose of sewage sludge. The DNA microarray technique was efficient to evaluate the alterations on the bacterial communities.
6

Robuste Datenauswertung und Anwendungen von Oligonukleotid-Arrays in der Genexpressionsanalyse

Röpcke, Stefan 30 September 2003 (has links)
Die Technologie der Oligonukleotid-Arrays erlaubt es, tausende von Genen parallel auf ihre Expression hin zu untersuchen. Die Firma metaGen, bei der diese Doktorarbeit entstand, setzt die Genexpressionsanalyse zur Identifikation von Targetmolekülen für die Therapie solider Tumoren ein. Im Zuge dieser Arbeit gelang die Entwicklung eines robusten Verfahrens zur Datenanalyse für Oligonukleotid-Arrays. Gerade für die Untersuchung humaner Proben ist die Robustheit von großem Interesse, da das Gewebematerial oft nur in sehr begrenzten Mengen und mit Qualitätsschwankungen behaftet vorliegt. Anhand eines eingeschränkten Sets an Kontrollversuchen konnte gezeigt werden, dass die vorgeschlagene Methode besser die Erwartungen an das System erfüllt als herkömmliche Verfahren. Ein weiterer Teil der Arbeit bestand im Aufbau einer relationalen Datenbank und in der schrittweisen Automatisierung der Auswertung. Stellvertretend für andere Krebserkrankungen wurde eine detaillierte Analyse zweier publizierter Expressionsdatensätze zum Bronchialkarzinom vorgenommen. Es konnten zwar in beiden Datensätzen zwischen Tumor- und Normalgewebe differenziell exprimierte Gene identifiziert werden, aber die Gegenüberstellung der Ergebnisse zeigte auch einen deutlichen Einfluss der unterschiedlichen Array-Technologien auf die gemessenen Intensitäten. Der spezielle Aufbau des verwendeten Oligonukleotid-Arrays gestattete die Entdeckung putativer Antisense-Transkripte. Die Koexpression einiger Sense- und Antisense-Sonden ließen sich durch Northern-Blot-Experimente bestätigen. Das unterstreicht das Anwendungspotenzial dieser Technologie für die Genomannotation. In einer Untersuchung der Transkriptome der Bäckerhefe und der Fruchtfliege konnte darüber hinaus ein Zusammenhang zwischen den Längen von Introns und Exons und der mittleren Expression von Genen hergestellt werden. Die Vielfalt der Anwendungen und die Ausbaumöglichkeiten verdeutlichen die Bedeutung und das Potenzial der Array-Technologie für die Genexpressionsanalyse. Eine wichtige Aufgabe bleibt deshalb die weitere Verbesserung der Qualitätskontrolle der Experimente und der Datenanalyse. / Oligonucleotide arrays represent a modern technology for the investigation of the expression of thounsands of genes in parallel. The theses were worked out at the company metaGen that uses gene expression analysis for the identification of target molecules for the therapy of solid tumors. One major achievement was the developement of a robust method for oligonucleotide array data analysis. It turned out that for the investigation of human tissue samples the robustness is crutial because the material is often very limited and of variing quality. Using a restricted set of control experiments the superiority of the method over standard procedures could be demonstrated. A further important part of the work was the construction of a relational database and the automation of the analysis process. To demonstrate the applicability of the methods in cancer research two publicly available lung cancer data sets were analysed. A list of differentially expressed genes was identified. But the comparison also revealed that the expression signals are strongly distorted by technical factors. The special array used at metaGen allowed the discorvery of putative antisense transcripts. Three of the candidates had been validated by Northern-blot analysis. This clearly shows the applicability of the array technology to genome annotations. An analysis of the transcriptoms of the bakers yeast and the fruit fly revealed a relationship between the average gene expression and the lengths of introns and exons. The manifold applications and extentions illustrate the inportance and the potential of the array technology. So that the improvement of the technology and of the data analysis will remain a major concern.
7

Analysis of genetic relatedness using DNA microarrays

Welander, Jenny January 2009 (has links)
<p>Analysis of genetic relatedness is of great importance in forensic casework such as immigration and identification cases. The conventional methods for relationship testing are not sufficient in the most complicated cases, because more genetic markers are required to obtain results with satisfactory statistical security. This study demonstrates that microarrays, which can be used to genotype thousands of single nucleotide polymorphisms (SNPs), could be a promising solution to this problem. The microarray technique used in this study performed very well on blood samples and also worked well in combination with whole genome amplification, but did not generate any results when used on severely degraded materials.</p><p>Markers suitable for relatedness analysis were selected from the microarray and were successfully tested on families with known genetic relations. Although a maximum of 64 autosomal markers were used, there is a great potential of selecting the hundreds or thousands of markers that may be required in some cases of relatedness investigation.</p>
8

Analysis of genetic relatedness using DNA microarrays

Welander, Jenny January 2009 (has links)
Analysis of genetic relatedness is of great importance in forensic casework such as immigration and identification cases. The conventional methods for relationship testing are not sufficient in the most complicated cases, because more genetic markers are required to obtain results with satisfactory statistical security. This study demonstrates that microarrays, which can be used to genotype thousands of single nucleotide polymorphisms (SNPs), could be a promising solution to this problem. The microarray technique used in this study performed very well on blood samples and also worked well in combination with whole genome amplification, but did not generate any results when used on severely degraded materials. Markers suitable for relatedness analysis were selected from the microarray and were successfully tested on families with known genetic relations. Although a maximum of 64 autosomal markers were used, there is a great potential of selecting the hundreds or thousands of markers that may be required in some cases of relatedness investigation.
9

Phosphorylation du CTD de l'ARN polymérase II et impact de l'histone H2A.Z sur le positionnement des nucléosomes chez S. cerevisiae

Bergeron, Maxime 10 1900 (has links)
La phosphorylation du domaine C-terminal de l’ARN polymérase II permet à ce complexe protéique d’exécuter la transcription des gènes, en plus de coupler à la transcription des événements moléculaires comme la maturation des ARNm. Mes résultats montrent que même si cette phosphorylation suit un patron similaire à l’ensemble des gènes, il existe des exceptions pouvant être dues à des mécanismes alternatifs de phosphorylation du CTD. Le présent ouvrage s’intéresse également au rôle qu’occupe la variante d’histone H2A.Z dans l’organisation de la chromatine. Des études précédentes on montré que le positionnement de certains nucléosomes le long de l’ADN serait influencé par H2A.Z et aurait une influence sur la capacité de transcrire les gènes. Par une approche génomique utilisant les puces à ADN, j’ai cartographié l’impact de la délétion de H2A.Z sur la structure des nucléosomes. Enfin, des résultats intéressants sur la dynamique d’incorporation de H2A.Z à la chromatine ont été obtenus. / RNA Polymerase II is the molecular complex responsible for the transcription of class II genes. Proper transcription and associated events such as mRNA processing are thought to require the phosphorylation of its C-terminal domain. Here I show that this phosphorylation follows a similar pattern for most of the genes, althought some exceptions exist. These exceptions could be explained by alternative phosphorylation mechanisms. Also, this work provides data on how the variant histone H2A.Z influences chromatin structure. Previous studies have shown a role for H2A.Z in the positioning of some nucleosomes along the DNA, which would impact the ability to transcribe genes. Here I used a microarray technology to profile nucleosome positions in a genome-wide manner. My data provide further evidence that H2A.Z influences nucleosome positioning. Interesting results regarding the dynamics of H2A.Z incorporation into chromatin are also shown.
10

Electric DNA chips for determination of pathogenic microorganisms

Liu, Yanling January 2008 (has links)
Silicon-based electric DNA chip arrays were utilized to fast identify pathogenic microorganisms with respect to the capacity to produce toxins involved in foodborne poisoning and infections. Bacteria of the B. cereus and the enterohemorrhagic E. coli (EHEC) groups contain different set-ups of various virulence factors that are encoded by the corresponding genes. The purpose of this work was to develop a fast and simple method for determination of the presence of these virulence genes in a colony from primary enrichment cultures. A target gene is detected through hybridization to a surface-immobilized specific capture probe and biotin-labeled detection probe. Following binding of an enzyme conjugate to this sandwich hybrid complex, a current signal is generated by electronic redox recycling of the enzymatic product paminophenol (pAP). Two versions of the assay were developed. In the first version the capture probes were immobilized on magnetic beads, which carried out all reactions until the pAP generation, while the final electric signal was created by transferring pAP to a single-electrode chip surface. In the second version a silicon chip array with 16 parallel sensing electrode positions each of them functionalized by capture probes, carried out all assay steps on the chip surface. This instrument can realize automatic and multiplexed gene detection. The kinetics of bacterial cell disruption and impact of DNA fragmentation by ultrasound were determined. The experimental data suggested that the increased signal after first minutes of ultrasonication were due to the accumulation of released DNA amount, while the further signal increase resulted from the improved hybridization with the shortened target DNA strands. Studies on probe localization on the 16-electrode chip assays indicated that the probe-targeting site, which was located at the 5’-end of strands, gave rise to the highest signal level due to the efficient targetprobes hybridization and the following enzyme binding. When these functionalized chip arrays were exposed to the cell homogenates, the sensing electrodes were fouled by cellular proteins and therefore led to dramatically decreased redox-recycling current. To circumvent this, samples were treated by DNA extraction after the 1st sonication and then DNA fragmentation by a 2nd time sonication. The DNA extract removed most of the interfering components from bacterial cell. This sample treatment was applied to characterize one “diarrheal” and one “emetic” strain of B. cereus with the chip arrays functionalized by eight DNA probes. The signal patterns of eight virulence genes from chip assays agreed well with PCR control analyses for both strains. By simply adding the SDS detergent to cell homogenates, chip surface blocking effect can be significantly reduced even without DNA extraction treatment. After optimization of some critical factors, the 16-electrode DNA chips with the improved sensing performance can directly detect multiple virulence genes from a single E. coli colony in 25 min after the introduction of supernatant of ultrasonicated cell lysate. / QC 20100824

Page generated in 0.0548 seconds