• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 93
  • 27
  • 20
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 389
  • 121
  • 98
  • 92
  • 69
  • 60
  • 59
  • 45
  • 39
  • 32
  • 31
  • 27
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

STRATIRGAPHY AND GEOCHRONOLOGY OF THE VERNOR MAMMOTH SITE, CLUTE, BRAZORIA COUNTY, TEXAS

Urista, Juan C. 16 January 2010 (has links)
Remains of a mammoth, other Pleistocene fauna, and a wooden bowl were recovered from the Vernor site located in Clute, Brazoria County on the Texas Gulf Coast. Stratigraphy, sedimentology, and geochronology were used to establish the depositional history of the site. The geologic evidence suggests that these sediments were deposited during a period of fluvial activity by an ancient meander belt of the Brazos River, known today as Oyster Creek, which characterized this region during the Late Pleistocene and Early Holocene. Organics associated with the wooden bowl were radiocarbon dated to 4205 + 30 yr B.P. (UCIAMS-12039), while sand grains associated with the remains of the mammoth were dated using the luminescence technique to 66,000 + 7000 yr B.P. (UIC1383). According to these dates and their positions in the stratigraphic record, it was established that the mammoth and other Pleistocene age fauna preceded human occupation, and are not contemporaneous with the wooden bowl.
42

Geochemical and geochronological relationships between granitoid plutons of the Biga Peninsula, NW Turkey

Black, Karen Naomi 20 July 2012 (has links)
The Aegean Sea is considered to be a classic back-arc basin. Back-arc basins may develop by active processes including retreat of the overriding plate or upwelling from the subducting slab. Alternatively, back-arc basins may develop as passive responses to regional tensional stresses. The Biga Peninsula of western Turkey provides an opportunity to explore and test these models. The Biga region is characterized by granitoid plutons of Cretaceous to Miocene age that may provide insight into the nature of extension. This study focuses on understanding the evolution of three of these plutons, the Kozak, Eybek, and Kestanbolu. Geochemical and geochronological data and cathodoluminescence (CL) images of the rocks and zircons were acquired. The first in situ (in thin section) ion microprobe U-Pb ages of zircon, and the first zircon ages ever reported from the Kozak and Eybek plutons are presented. Zircon ages range from 36.5±6.6 Ma to 17.1±0.7 Ma (238U/206Pb, ±1) with two ages from a single grain of 280±18 Ma and 259±14 Ma. Samples from the Kozak and Eybek plutons are magnesian, calc-alkalic, and metaluminous, whereas the Kestanbolu rocks are magnesian, alkali-calcic, and metaluminous with one ferroan sample. The Rb vs. (Y+Nb) diagram suggests the Kozak and Kestanbolu plutons have a volcanic arc source, whereas the Eybek pluton records a within plate setting. CL imagery documents magma mixing, brittle deformation, and fluid- rock interactions based upon cracked plagioclase cores, cross-cutting microcracks, and fluid reaction textures of myrmekite and red rims on alkali feldspar. The plutons were generated following the collision of the Sakarya continent with the Anatolide-Tauride block. Geochemical data suggest the Kozak and Kestanbolu granitoids were generated by fluid flux melting from dehydration of the subducting slab of the Anatolide-Tauride block. The Kestanbolu granitoid intruded into the Vardar Suture north of this collision, whereas the Eybek pluton was created within the lithosphere during exhumation of the Kazdağ Massif. The Eocene - Oligocene zircon ages indicate emplacement and initial crystallization of the plutons. Early Miocene ages indicate ongoing extension in the region at this time and are consistent with earlier interpretations that subduction slab roll-back along the Hellenic arc formed the extensional environment in the region at this time. / text
43

APPLICATIONS OF THE RE-OS ISOTOPIC SYSTEM IN THE STUDY OF MINERAL DEPOSITS: GEOCHRONOLOGY AND SOURCE OF METALS

Barra-Pantoja, Luis Fernando January 2005 (has links)
In mineral deposits the application of the Re-Os system has evolved on two fronts; as a geochronometer in molybdenite, and as a tracer of the source of metals by direct determination of the source of Os contained in the ore minerals. Results obtained from a wide variety and types of mineral deposits indicate that ore minerals in most deposits contain a high initial osmium composition, compared to the mantle value at the time of ore formation. The Re-Os data presented here for the Platreef, South Africa, adds to the growing notion that the crust plays a fundamental role in the formation of mineral deposits and as a source of ore minerals. Additional data from the Zambian Copperbelt illustrate the utility of the Re-Os system as a geochronometer of sulfide mineralization. Two isochron ages of ca. 825 Ma and 575 Ma are consistent with a long-lived period of multistage mineralization linked to basin evolution and support a model where brines play a fundamental role in the formation of sediment-hosted stratiform deposits.Numerous new Re-Os molybdenite ages have recently been reported; however, the behavior of Re and Os in molybdenites is still poorly understood and controversy remains regarding the possible disturbance of the Re-Os isotopic system. Previous studies indicate that the Re-Os system in molybdenites, and in other sulfides, can experience disturbance by Re and Os loss or Re gain (both examples of open system behavior), and that the analysis of these altered samples yields equivocal ages. Through replicate analyses of samples and/or comparison with other robust dating techniques, such as the U-Pb geochronometer, it is possible to differentiate between Re-Os molybdenite ages reflecting a mineralization age or a post depositional event. Once the reliability of the Re-Os molybdenite analyses is proven, it is possible to constrain the timing of mineralization and the identification of multiple molybdenite mineralization events, information that is relevant in assessing the longevity of porphyry systems.The examples presented in this work support the use of the Re-Os isotopic system as an important geochemical tool in the understanding of mineral deposits.
44

Development and Application of Geochronometric Techniques to the Study of Sierra Nevada Uplift and the Dating of Authigenic Sediments

Cecil, Mary Robinson January 2009 (has links)
This dissertation contains studies that use various geochronometric and thermochronometric techniques to better understand the post-magmatic evolution of Sierra Nevada, California. (U-Th)/He ages in apatite and zircon from Sierran batholithic rocks are used to constrain the Cenozoic exhumation of the northern part of the range. Zircon and apatite ages determined from the same samples revealed relatively rapid cooling and exhumation rates (0.2 - 0.8 km/My) from ~ 90 to 60 Ma, followed by tectonic quiescence and slow exhumation (0.02 - 0.04 km/My) from the late Paleocene to present. In addition to the thermochronology of basement lithologies, the detrital zircon geochronology of grains from preserved Eocene fluvial sediments in the central and northern Sierra Nevada was performed. U-Pb ages of detrital zircons from the deposits were found to have distributions closely matching age-area estimates of Mesozoic plutons in the Sierra Nevada, suggesting that Eocene river systems were draining local Sierran catchments and likely had steeper axial gradients than has been proposed. Provenance analysis of the Eocene sediments is used to provide constraints on the paleotopography of the Sierra Nevada and inferred range-wide Cenozoic uplift.In addition to the Sierra Nevada work, this dissertation also contains studies that focus on the development of the K-Ca system as a geochronometric technique suitable for dating the deposition of sedimentary sequences. We present a new method for measuring Ca isotopic ratios using a multi-collector ICP-MS equipped with a hexapole collision cell. Isobaric argon interferences are minimized via gas phase reactions in the collision cell. The reproducibility of Ca ratio measurements is found to be ~ 0.02 % (RSD), which is comparable to high precision TIMS techniques and an order of magnitude improvement over single collector ICP-MS techniques using a similar reaction cell method. K-Ca ages of glauconite and K-rich evaporites are determined in order to evaluate the usefulness of the K-Ca system as a sedimentary geochronometer. K-Ca ages in both glauconite and K-salts are found to be variable and significantly younger than documented depositional ages. Reported ages, however, are thought to be recording important basinal thermal histories and recrystallization events.
45

Tectonic Evolution of the South Tibetan Detachment System, Bhutan Himalaya

Kellett, Dawn 12 August 2010 (has links)
Syn-convergent low-angle normal-sense detachments (LANDs) are found in many orogens around the world. However, those tectonic processes which result in their formation are little known. The South Tibetan detachment system (STDS) is the best-studied example worldwide of a syn-convergent LAND, and formed in the Miocene due to the continental collision of India and Asia. In Bhutan, eastern Himalaya, the STDS is duplicated. Here I investigate the tectonic history of the inner STDS and particularly the outer STDS in Bhutan, to determine whether the duplicated STDS can be explained by or used to constrain models of Himalayan orogenesis. A range of geochronometric, thermochronologic, petrologic, structural, thermobarometric, thermometric, and isotopic tools are used to constrain: the onset and cessation of motion on the outer STDS; the cessation of motion on the inner STDS; the peak metamorphic conditions in the hanging wall and footwall of the outer STDS; the pressure-temperature-time paths of tectonites in the hanging wall and footwall of the outer STDS; the structural history of the hanging wall rocks of the outer STDS, and; the paleogeographic affinity of the hanging wall rocks of the outer STDS. The results of these studies are compared to thermo-mechanical models of Himalayan- type continental collision. Similarities in model predictions of the type and timing of structures, peak metamorphic conditions of hanging wall and footwall tectonites, pressure-temperature-time paths, and other regional tectonic observations lead to two main conclusions. 1. The STDS is a system of three main types of LANDs: those that formed during channel flow of low-viscosity mid-crustal rocks, those that formed by extrusion of cooled channel rocks to the surface, and those that formed by destabilization of the upper crust above a dome of mid-crustal channel rocks. 2. The STDS was duplicated by underthrusting of a crustal ramp into the Himalayan orogen since early Miocene. The underthrusting led to extrusion of a dome of weak mid-crustal above a previously-extruded channel. The crustal ramp may be local to the eastern Himalaya due to higher convergence and/or erosion rates, or due to local underthrusting of relatively strong crust behind weaker crust.
46

Geology, geochronology, thermobarometry, and tectonic evolution of the Queen Maud block, Churchill craton, Nunavut, Canada

Tersmette, Daniel B. Unknown Date
No description available.
47

CHIMEの現状と利用(2012年度)

Enami, Masaki, Kato, Takenori, 榎並, 正樹, 加藤, 丈典 03 1900 (has links)
名古屋大学年代測定総合研究センターシンポジウム報告
48

Exhumation of Deep Mountain Roots: Lessons from the Western Tatra Mountains, Northern Slovakia

Moussallam, Yves 24 November 2011 (has links)
The Tatric crystalline unit of the Western Carpathians in northern Slovakia displays an inverted metamorphic sequence where high-grade migmatite and orthogneiss units are overlying lower-grade mica schists. Enclosed within the migmatites are lenses of eclogite-bearing amphibolites. Conventional geothermobarometry coupled with isochemical modeling constrained P-T paths that exhibit contrasting metamorphic histories for rock units that are now heterogeneously interleaved. Relict eclogite facies assemblages with occasionally preserved omphacite record post-peak pressure conditions of 1.7-1.8 GPa followed by near isothermal decompression at ~750 °C leading to intensive re-equilibration of eclogites at high-pressure granulite facies conditions and development of diopside + plagioclase symplectitic textures. New ID-TIMS Sm-Nd dating of garnet separated from the omphacite-bearing eclogite yields a whole rock-garnet isochron age of 337 ± 10 Ma, with an epsilon Nd isotopic composition of +8.3. While major element profiles across the garnets display little variation, the trace element distribution shows a typical HREE enrichment profile and a slight core to rim disparity with LREE and MREE concentrations higher in the cores and higher HREE in the rims. Granulite-facies migmatites that host the eclogite boudins record lower pressure metamorphic conditions of 1.2 GPa at ~750 °C and a similar retrograde path. The lower-grade micaschists reached metamorphic conditions of 0.8 GPa at ~650 °C. Monazite U-Pb analysis from a migmatite surrounding the eclogite boudins yields one population of ca. 380 Ma age. Another migmatite away from the eclogite yields two populations monazite ages. A robust 340 ± 11 Ma monazite U-Pb age is indistinguishable from our garnet age and U-Pb SIMS age of zircons in the anatectic leucosome of the migmatite (347 ± 7 Ma). We interpret the ca. 340 Ma ages to represent the exhumation of the deep crustal root of the Variscan orogen into the middle crust coeval with anatexis. A younger monazite U-Pb age of 300 ± 16 Ma is consistent with 40Ar/39Ar thermochronology data of ca. 310 Ma that is likely indicative of the Late Carboniferous I-type magmatism and cooling in the Tatric block. Cooling rates calculated by garnet diffusion modeling yield estimates of ~30 °/Ma. This exhumation was likely tectonically forced by the action of a rigid indentor which prompted the weak lower crust to be heterogeneously extruded to mid-crustal levels at a time coeval with anatexis and subsequently extruded with mid-crustal material to the upper crust.
49

Reworking the Gawler Craton: metamorphic and geochronologic constraints on palaeoproterozoic reactivation of the southern Gawler Craton, Australia.

Dutch, Rian A. January 2009 (has links)
The Gawler Craton in South Australia consists of an Archaean to Palaeoproterozoic core surrounded and intruded by a series of Palaeo- to Mesoproterozoic metasediments and igneous suites. The region has experienced a protracted c. 1700 Myr tectonic history from the Archaean through to the Mesoproterozoic, experiencing numerous cycles of deformation, magmatism and basin development. Despite hosting a number of mineral deposits, including the immense Olympic Dam iron oxide-copper-gold deposit, the tectonothermal evolution of the Gawler Craton remains poorly constrained. A significant ambiguity in our current understanding of the geological framework of the Gawler Craton revolves around the timing and spatial distribution of the tectonic events within the craton and their metamorphic evolution. This study addresses some of this ambiguity by unravelling the timing and tectonothermal evolution of the reworked southern Gawler Craton, using a combination of structural and metamorphic analysis, coupled with targeted geochronology. These methods have been applied to three locations representing different lithologies across the southern Gawler Craton. Putting absolute time into structural and metamorphic analysis is a vital tool for unravelling the development of ancient and modern orogenic systems. Electron Probe Micro-Analysis (EPMA) chemical dating of monazite provides a useful method of obtaining good precision age data from monazite bearing assemblages. This technique was developed at the University of Adelaide in order to constrain the timing of reworked assemblages from the southern Gawler Craton. EPMA measurements carried out on samples of known age, from Palaeoproterozoic to Ordovician, produce ages which are within error of the isotopically determined ages, indicating the validity of the developed setup. This technique, together with SHRIMP monazite and titanite and garnet Sm-Nd geochronology, was used on selected samples from the southern Gawler Craton to determine the timing of high-grade metamorphism and deformation. The results show that the Sleaford Complex records evidence of an early D₁event during the c. 2450 Ma Sleaford Orogeny recorded within structural boudins. The majority of the data indicates that the region underwent subsequent reworking and thorough overprinting during the 1725–1690 Ma Kimban Orogeny. In the Coffin Bay region, Palaeoproterozoic peraluminous granites of the Dutton Suite are reworked by a series of migmatitic and mylonitic shear zones during the Kimban Orogeny. Peak metamorphic conditions recorded in mafic assemblages indicate conditions of 10 kbar at 730°C. The post-peak evolution is constrained by partial to complete replacement of garnet – clinopyroxene bearing mafic assemblages by hornblende – plagioclase symplectites, which record conditions of c. 6 kbar at 700°C, implying a steeply decompressional exhumation path. The Shoal Point region consists of a series of reworked granulite-facies metapelitic and metaigneous units which belong to the late Archaean Sleaford Complex. Structural evidence indicates three phases of fabric development with D₁retained within boudins, D₂consisting of a series upright open to isoclinal folds producing an axial planar fabric and D₃, a highly planar vertical high-strain fabric which overprints the D₂ fabric. Geochronology constrains the D₁ event to the c. 2450 Ma Sleafordian Orogeny while the D₂the D₃events are constrained to the 1730–1690 Ma Kimban Orogeny. P-T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5–6 kbar and 750–780 °C. Subsequent Kimban-aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D₂ event. Followed by near isothermal decompression to metamorphic conditions <6 kbar and 790–850 °C associated with the development of the D₃high-strain fabric. The Pt Neill and Mine Creek regions are located in the core and on the flank of the crustal scale Kalinjala Shear Zone, which forms the main structural element of the poorly exposed Kimban Orogen. Samples record a similar structural development with a dextrally transpressive system resulting in a layer parallel migmatitic gneissic to mylonitic KS₁ fabric which was subsequently deformed and reworked by upright folds and discrete KD₂ east-side-down sub-solidus mylonitic shear zones during east-west compression. Geochronology constrains the timing of deformation and metamorphism to the Kimban Orogeny between 1720 and 1700 Ma. Metamorphic P-T analysis and pseudosections constrain the peak M₁ conditions in the core of the shear zone to 10–11 kbar at c. 800 °C reflecting lower crustal conditions at depths of up to 30 km. On the flank of the shear zone the M₁ conditions reached 6–7 kbar at 750 °C followed by sub-solidus reworking during KD₂ at conditions of 3–4 kbar at 600–660 °C, suggesting a maximum burial of <24 km. Cooling rates suggest that the core of the shear zone cooled at rates in excess of 40–80 °CMa⁻¹ while the flank underwent much slower cooling at < 10°CMa⁻¹. The rapid cooling and inferred decompression in the core of the shear zone reflects rapid burial and exhumation of lower-crustal material into the mid-crust along the Kalinjala Shear Zone. The absence of evidence for extension indicates that differential exhumation and the extrusion of lower-crustal material into the mid-crust was driven by transpression along the shear zone and highlights the role of transpression in creating large variations in vertical exhumation over relatively short lateral extents. Garnet is a vital mineral for determining constrained P-T-t paths as it can give both the P-T and t information directly. However, estimates of the closure temperature of the Sm-Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. Five igneous garnets of varying size from an undeformed 2414 ± 6 Ma garnet – cordierite bearing s-type granite from the Coffin Bay region, that were subjected to high-T reworking during the Kimban Orogeny, have been dated to examine their diffusional behaviour in the Sm-Nd system. Garnets were compositionally profiled and then dated. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element and REE traverses reveal homogonous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggests that diffusion rates of REE’s are considerably slower than that of the major cations, in disagreement with recent experimental determinations of the diffusion rates of REE in garnet. The retention of REE zoning and the lack of resetting in the largest grains suggests that Sm-Nd closure temperature in garnet is a function of grain-size, thermal history and REE zoning in garnet. The findings of this study provide the first temporally constrained tectonothermal model of the evolution of the southern Gawler Craton. The P-T conditions obtained from the earliest D₁ fabric provide the first quantitative constraints on the P-T conditions of the southern Sleafordian Orogeny. The P-T-t evolution determined for the 1725–1690 Ma Kimban Orogeny indicate it developed along a clockwise P-T path, and dominates the structural and metamorphic character of the southern Gawler Craton. The large variations in exhumation over short lateral extents reflect the exhumation of lower crustal rocks during the Kimban Orogeny driven by transpression during the development of a regional transpressional ‘flower structure’. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1372052 / Thesis (Ph.D.) - University of Adelaide, School of Earth and Environmental Sciences, 2009
50

The Influence of Magmatism and the Subcontinental Lithosphere on the Metallogency of Orogenic Gold deposits: Evidence from 3He/4He, 187Re/187Os and 40Ar/39Ar Isotope Systematics of the Gympie Goldfield, Southeast Queensland

Gotthard, R. S. Unknown Date (has links)
No description available.

Page generated in 0.0484 seconds