• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 366
  • 18
  • 3
  • 1
  • 1
  • Tagged with
  • 392
  • 392
  • 392
  • 158
  • 101
  • 94
  • 91
  • 78
  • 78
  • 64
  • 56
  • 48
  • 46
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Understanding Open Spaces in an Arid City

January 2011 (has links)
abstract: This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory to conceptualize the physical characteristics of open spaces. In addition, a 'W-green index' is developed to quantify the scope of greenness in urban open spaces. Finally, I characterize the environmental impact of open spaces' greenness on the surface temperature, explore the social benefits through observing recreation and relaxation, and identify the relationship between housing price and open space be creating a hedonic model on nearby housing to quantify the economic impact. Fuzzy open space mapping helps to investigate the landscape characteristics of existing-recognized open spaces as well as other areas that can serve as open spaces. Research findings indicated that two fuzzy open space values are effective to the variability in different land-use types and between arid and humid cities. W-Green index quantifies the greenness for various types of open spaces. Most parks in Tempe, Arizona are grass-dominant with higher W-Green index, while natural landscapes are shrub-dominant with lower index. W-Green index has the advantage to explain vegetation composition and structural characteristics in open spaces. The outputs of comprehensive analyses show that the different qualities and types of open spaces, including size, greenness, equipment (facility), and surrounding areas, have different patterns in the reduction of surface temperature and the number of physical activities. The variance in housing prices through the distance to park was, however, not clear in this research. This dissertation project provides better insight into how to describe, plan, and prioritize the functions and types of urban open spaces need for sustainable living. This project builds a comprehensive framework for analyzing urban open spaces in an arid city. This dissertation helps expand the view for urban environment and play a key role in establishing a strategy and finding decision-makings. / Dissertation/Thesis / Ph.D. Geography 2011
192

The Development and Assessment of a Spatial Decision Support System for Watershed Management in the Niantic River Watershed: A Geodesign Approach

January 2014 (has links)
abstract: This dissertation advances spatial decision support system development theory by using a geodesign approach to evaluate design alternatives for such systems, including the impacts of the spatial model, technical spatial data, and user interface tools. These components are evaluated with a case study spatial decision support system for watershed management in the Niantic River watershed in Connecticut, USA. In addition to this case study, this dissertation provides a broader perspective on applying the approach to spatial decision support systems in general. The spatial model presented is validated, the impacts of the model are considered. The technical spatial data are evaluated using a new method developed to quantify data fitness for use in a spatial decision support system. Finally, the tools of the user interface are assessed by applying a conceptual framework and evaluating the resulting tools via user survey. / Dissertation/Thesis / Doctoral Dissertation Geography 2014
193

A Threshold Coverage Flow-Refueling Location Model to Build a Critical Mass of Alternative-Fuel Stations

January 2015 (has links)
abstract: In order to address concerns about the dominance of petroleum-fueled vehicles, the transition to alternative-fueled counterparts is urgently needed. Top barriers preventing the widespread diffusion of alternative-fuel vehicles (AFV) are the limited range and the scarcity of refueling or recharging infrastructures in convenient locations. Researchers have been developing models for optimally locating refueling facilities for range-limited vehicles, and recently a strategy has emerged to cluster refueling stations to encourage consumers to purchase alternative-fuel vehicles by building a critical mass of stations. However, clustering approaches have not yet been developed based on flow-based demand. This study proposes a Threshold Coverage extension to the original Flow Refueling Location Model (FRLM). The new model optimally locates p refueling stations on a network so as to maximize the weighted number of origin zones whose refuelable outbound round trips exceed a given threshold, thus to build critical mass based on flow-based demand on the network. Unlike other clustering approaches, this model can explicitly ensure that flow demands “covered” in the model are refuelable considering the limited driving range of AFVs. Despite not explicitly including local intra-zonal trips, numerical experiments on a statewide highway network proved the effectiveness of the model in clustering stations based on inter-city flow volumes on the network. The model’s policy implementation will provide managerial insights for some key concerns of the industry, such as geographic equity vs. critical mass, from a new perspective. This project will serve as a step to support a more successful public transition to alternative-fuel vehicles. / Dissertation/Thesis / Masters Thesis Geography 2015
194

Improving Urban Cooling in the Semi-arid Phoenix Metropolis: Land System Science, Landscape Ecology and Urban Climatology Approaches

January 2018 (has links)
abstract: The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land surface and canopy layer air temperatures. The surface temperature is of prime importance to UHI studies because of its central rule in the surface energy balance, direct effects on air temperature, and outdoor thermal comfort. Focusing on the diurnal surface temperature variations in Phoenix, Arizona, especially on the cool (green space) island effect and the surface heat island effect, the dissertation develops three research papers that improve the integration among the abovementioned sub-fields. Specifically, these papers involve: (1) the quantification and modeling of the diurnal cooling benefits of green space; (2) the optimization of green space locations to reduce the surface heat island effect in daytime and nighttime; and, (3) an evaluation of the effects of vertical urban forms on land surface temperature using Google Street View. These works demonstrate that the pattern of new green spaces in central Phoenix could be optimized such that 96% of the maximum daytime and nighttime cooling benefits would be achieved, and that Google Street View data offers an alternative to other data, providing the vertical dimensions of land-cover for addressing surface temperature impacts, increasing the model accuracy over the use of horizontal land-cover data alone. Taken together, the dissertation points the way towards the integration of research directions to better understand the consequences of detailed land conditions on temperatures in urban areas, providing insights for urban designs to alleviate these extremes. / Dissertation/Thesis / Doctoral Dissertation Geography 2018
195

Issues in the Distribution Dynamics Approach to the Analysis of Regional Economic Growth and Convergence: Spatial Effects and Small Samples

January 2018 (has links)
abstract: In the study of regional economic growth and convergence, the distribution dynamics approach which interrogates the evolution of the cross-sectional distribution as a whole and is concerned with both the external and internal dynamics of the distribution has received wide usage. However, many methodological issues remain to be resolved before valid inferences and conclusions can be drawn from empirical research. Among them, spatial effects including spatial heterogeneity and spatial dependence invalidate the assumption of independent and identical distributions underlying the conventional maximum likelihood techniques while the availability of small samples in regional settings questions the usage of the asymptotic properties. This dissertation is comprised of three papers targeted at addressing these two issues. The first paper investigates whether the conventional regional income mobility estimators are still suitable in the presence of spatial dependence and/or a small sample. It is approached through a series of Monte Carlo experiments which require the proposal of a novel data generating process (DGP) capable of generating spatially dependent time series. The second paper moves to the statistical tests for detecting specific forms of spatial (spatiotemporal) effects in the discrete Markov chain model, investigating their robustness to the alternative spatial effect, sensitivity to discretization granularity, and properties in small sample settings. The third paper proposes discrete kernel estimators with cross-validated bandwidths as an alternative to maximum likelihood estimators in small sample settings. It is demonstrated that the performance of discrete kernel estimators offers improvement when the sample size is small. Taken together, the three papers constitute an endeavor to relax the restrictive assumptions of spatial independence and spatial homogeneity, as well as demonstrating the difference between the small sample and asymptotic properties for conventionally adopted maximum likelihood estimators towards a more valid inferential framework for the distribution dynamics approach to the study of regional economic growth and convergence. / Dissertation/Thesis / Doctoral Dissertation Geography 2018
196

Statistical evaluation and GIS model development to predict and classify habitat quality for the endangered Southwestern Willow Flycatcher

January 2013 (has links)
abstract: The Southwestern Willow Flycatcher (Empidonax traillii extimus) has been studied for over two decades and listed as endangered for most of that time. Though the flycatcher has been granted protected status since 1995, critical habitat designation for the flycatcher has not shared the same history. Critical habitat designation is essential for achieving the long-term goals defined in the flycatcher recovery plan where emphasis is on both the protection of this species and "the habitats supporting these flycatchers [that] must be protected from threats and loss" (U.S. Fish and Wildlife Service 2002). I used a long-term data set of habitat characteristics collected at three study areas along the Lower Colorado River to develop a method for quantifying habitat quality for flycatcher. The data set contained flycatcher nest observations (use) and habitat availability (random location) from 2003-2010 that I statistically analyzed for flycatcher selection preferences. Using both Pearson's Chi-square test and SPSS Principal Component Analysis (PCA) I determined that flycatchers were selecting 30 habitat traits significantly different among an initial list of 127 habitat characteristics. Using PCA, I calculated a weighted value of influence for each significant trait per study area and used those values to develop a habitat classification system to build predictive models for flycatcher habitat quality. I used ArcGIS® Model Builder to develop three habitat suitability models for each of the habitat types occurring in western riparian systems, native, mixed exotic and exotic dominated that are frequented by breeding flycatchers. I designed a fourth model, Topock Marsh, to test model accuracy on habitat quality for flycatchers using reserved accuracy assessment points of previous nest locations. The results of the fourth model accurately predicted a decline in habitat at Topock Marsh that was confirmed by SWCA survey reports released in 2011 and 2012 documenting a significant decline in flycatcher productivity in the Topock Marsh study area. / Dissertation/Thesis / M.S. Applied Biological Sciences 2013
197

A Spatial Decision Support System for Optimizing the Environmental Rehabilitation of Borderlands

January 2013 (has links)
abstract: The border policies of the United States and Mexico that have evolved over the previous decades have pushed illegal immigration and drug smuggling to remote and often public lands. Valuable natural resources and tourist sites suffer an inordinate level of environmental impacts as a result of activities, from new roads and trash to cut fence lines and abandoned vehicles. Public land managers struggle to characterize impacts and plan for effective landscape level rehabilitation projects that are the most cost effective and environmentally beneficial for a region given resource limitations. A decision support tool is developed to facilitate public land management: Borderlands Environmental Rehabilitation Spatial Decision Support System (BERSDSS). The utility of the system is demonstrated using a case study of the Sonoran Desert National Monument, Arizona. / Dissertation/Thesis / M.A. Geography 2013
198

An Analysis of Bid-Rent Curve Variations Across American Cities

January 2014 (has links)
abstract: Research literature were reviewed regarding the land-use economic theory of bid-rent curves and the modern emergence of polycentric cities. Two independent Geographic Information System (GIS) analyses were completed to test the hypothesis that bid-rent methodology could be used to tease out trends in residential locations, and hence contribute to present-day urban planning efforts. Specifically, these analyses sought to address the relationships between place of work and place of residence in urban areas. A generalizable set of benchmarks for identifying urban employment centers were established for 10 study cities in the United States, and bid-rent curves were calculated under separate monocentric assumptions and polycentric assumptions. The results presented wide variations in real bid-rent curves that a) overall deviated dramatically from the hypothetical distribution of rent, and b) spoke to the unique residential patterns in individual U.S. cities. The implications of these variations were discussed with regard to equitable housing for marginalized groups and access to centers of employment. / Dissertation/Thesis / M.U.E.P. Geography 2014
199

Multiscale Geographically Weighted Regression: Computation, Inference, and Application

January 2020 (has links)
abstract: Geographically Weighted Regression (GWR) has been broadly used in various fields to model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that processes (relationships between the response variable and the predictor variables) all operate at the same scale. However, this posits a limitation in modeling potentially multi-scale processes which are more often seen in the real world. For example, the measured ambient temperature of a location is affected by the built environment, regional weather and global warming, all of which operate at different scales. A recent advancement to GWR termed Multiscale GWR (MGWR) removes the single bandwidth assumption and allows the bandwidths for each covariate to vary. This results in each parameter surface being allowed to have a different degree of spatial variation, reflecting variation across covariate-specific processes. In this way, MGWR has the capability to differentiate local, regional and global processes by using varying bandwidths for covariates. Additionally, bandwidths in MGWR become explicit indicators of the scale at various processes operate. The proposed dissertation covers three perspectives centering on MGWR: Computation; Inference; and Application. The first component focuses on addressing computational issues in MGWR to allow MGWR models to be calibrated more efficiently and to be applied on large datasets. The second component aims to statistically differentiate the spatial scales at which different processes operate by quantifying the uncertainty associated with each bandwidth obtained from MGWR. In the third component, an empirical study will be conducted to model the changing relationships between county-level socio-economic factors and voter preferences in the 2008-2016 United States presidential elections using MGWR. / Dissertation/Thesis / Doctoral Dissertation Geography 2020
200

Modeling Flood Potential Based on Land Use in the Greenbrier River Watershed in West Virginia, USA

Lopez Sanchez, Manuel Eduardo 10 September 2021 (has links)
No description available.

Page generated in 0.1381 seconds