• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GIS and Location Theory Based Bioenergy Systems Planning

Dong, Jingyuan 19 June 2008 (has links)
This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to the active plants. Bioenergy, a promising renewable energy resource, has potentially significant benefits to climate change, global warming, and alternative energy supplies. As modern bioenergy applications in power production have the ability to generate cleaner electricity and reduce Green House Gas (GHG) emissions compared with traditional fossil fuels, many researchers have proposed various approaches to obtain competitive power generation prices from biomass in different ways. However, the highly dispersed geographical distribution of biomass is a big challenge for regional bioenergy systems planning. This thesis introduces an integrated methodology combining Geographic Information Systems (GIS) and discrete location theories for biomass availability assessment, biomass power plant candidate selection, and location-allocation of power plants and biomass supplies. Firstly, a well known discrete location model – the p-Median Problem (PMP) model is employed to minimize the weighted transportation costs of delivering all collectable biomass to active power plants. Then, a p-Uncapacitated Facility Location Problem (p-UFLP) model for minimizing the Levelized Unit Costs of Energy (LUCE) is proposed and genetic algorithms (GAs) for solving these optimization problems are investigated. To find the most suitable sites for constructing biomass power plants, the Analytic Hierarchy Process (AHP) and GIS based suitability analysis are employed subject to economical, societal, public health, and environmental constraints and factors. These methods and models are aimed at evaluating available biomass, optimally locating biomass power plants and distributing all agricultural biomass to the active power plants. The significance of this dissertation is that a fully comprehensive approach mixed with the applications of GIS, spatial analysis techniques, an AHP method and discrete location theories has been developed to address regional bioenergy systems planning, involving agricultural biomass potential estimation, power plants siting, and facility locations and supplies allocation scenarios. With the availability of the spatial and statistical data, these models are capable of evaluating and identifying electric power generation from renewable bioenergy on the regional scale optimally. It thus provides the essential information to decision makers in bioenergy planning and renewable bioenergy management. An application sited in the Region of Waterloo, Ontario Canada is presented to demonstrate the analysis and modelling process.
2

GIS and Location Theory Based Bioenergy Systems Planning

Dong, Jingyuan 19 June 2008 (has links)
This research is concerned with bioenergy systems planning and optimization modelling in the context of locating biomass power plants and allocating available biomass feedstock to the active plants. Bioenergy, a promising renewable energy resource, has potentially significant benefits to climate change, global warming, and alternative energy supplies. As modern bioenergy applications in power production have the ability to generate cleaner electricity and reduce Green House Gas (GHG) emissions compared with traditional fossil fuels, many researchers have proposed various approaches to obtain competitive power generation prices from biomass in different ways. However, the highly dispersed geographical distribution of biomass is a big challenge for regional bioenergy systems planning. This thesis introduces an integrated methodology combining Geographic Information Systems (GIS) and discrete location theories for biomass availability assessment, biomass power plant candidate selection, and location-allocation of power plants and biomass supplies. Firstly, a well known discrete location model – the p-Median Problem (PMP) model is employed to minimize the weighted transportation costs of delivering all collectable biomass to active power plants. Then, a p-Uncapacitated Facility Location Problem (p-UFLP) model for minimizing the Levelized Unit Costs of Energy (LUCE) is proposed and genetic algorithms (GAs) for solving these optimization problems are investigated. To find the most suitable sites for constructing biomass power plants, the Analytic Hierarchy Process (AHP) and GIS based suitability analysis are employed subject to economical, societal, public health, and environmental constraints and factors. These methods and models are aimed at evaluating available biomass, optimally locating biomass power plants and distributing all agricultural biomass to the active power plants. The significance of this dissertation is that a fully comprehensive approach mixed with the applications of GIS, spatial analysis techniques, an AHP method and discrete location theories has been developed to address regional bioenergy systems planning, involving agricultural biomass potential estimation, power plants siting, and facility locations and supplies allocation scenarios. With the availability of the spatial and statistical data, these models are capable of evaluating and identifying electric power generation from renewable bioenergy on the regional scale optimally. It thus provides the essential information to decision makers in bioenergy planning and renewable bioenergy management. An application sited in the Region of Waterloo, Ontario Canada is presented to demonstrate the analysis and modelling process.
3

Addressing Geographic Uncertainty In Spatial Optimization

January 2013 (has links)
abstract: There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This research focuses on developing methods to address geographic data uncertainty in spatial optimization. An integrated approach that characterizes uncertainty impacts by constructing and solving a new multi-objective model that explicitly incorporates facets of data uncertainty is developed. Empirical findings illustrate that the proposed approaches can be applied to evaluate the impacts of data uncertainty with statistical confidence, which moves beyond popular practices of simulating errors in data. Spatial uncertainty impacts are evaluated in two contexts: harvest scheduling and sex offender residency. Owing to the integration of spatial uncertainty, the detailed multi-objective models are more complex and computationally challenging to solve. As a result, a new multi-objective evolutionary algorithm is developed to address the computational challenges posed. The proposed algorithm incorporates problem-specific spatial knowledge to significantly enhance the capability of the evolutionary algorithm for solving the model.   / Dissertation/Thesis / Ph.D. Geography 2013
4

Agricultural BMP Placement for Cost-effective Pollution Control at the Watershed Level

Veith, Tamie L. 26 April 2002 (has links)
The overall goal of this research was to increase, relative to targeting recommendations, the cost-effectiveness of pollution reduction measures within a watershed. The goal was met through development of an optimization procedure for best management practice (BMP) placement at the watershed level. The procedure combines an optimization component, written in the C++ language, with spatially variable nonpoint source (NPS) prediction and economic analysis components, written in the ArcView geographic information system scripting language. The procedure is modular in design, allowing modifications or enhancements to the components while maintaining the overall theory. The optimization component uses a genetic algorithm to optimize a lexicographic multi-objective function of pollution reduction and cost increase. The procedure first maximizes pollution reduction to meet a specified goal, or maximum allowable load, and then minimizes cost increase. For the NPS component, a sediment delivery technique was developed and combined with the Universal Soil Loss Equation to predict average annual sediment yield at the watershed outlet. Although this evaluation considered only erosion, the NPS pollutant fitness score allows for evaluation of multiple pollutants, based on prioritization of each pollutant. The economic component considers farm-level public and private costs, accounting for crop productivity levels by soil and for enterprise budgets by field. The economic fitness score assigns higher fitness scores to scenarios in which costs decrease or are distributed more evenly across farms. Additionally, the economic score considers the amounts of cropland, hay, and pasture needed to meet feed and manure/poultry litter spreading requirements. Application to two watersheds demonstrated that the procedure optimized BMP placement, locating scenarios more cost-effective than a targeting strategy solution. The optimization procedure identified solutions with lower costs than the targeting strategy solution for the same level of pollution reduction. The benefit to cost ratio, including use of the procedure and implementation of resulting solutions, was demonstrated to be greater for the optimization procedure than for the targeting strategy. The optimization procedure identifies multiple near optimal solutions. Additionally, the procedure creates and evaluates scenarios in a repeated fashion without requiring human interaction. Thus, more scenarios can be evaluated than are feasible to evaluate manually. / Ph. D.
5

Spatial Optimization Approaches for Solving the Continuous Weber and Multi-Weber Problems

January 2012 (has links)
abstract: Facility location models are usually employed to assist decision processes in urban and regional planning. The focus of this research is extensions of a classic location problem, the Weber problem, to address continuously distributed demand as well as multiple facilities. Addressing continuous demand and multi-facilities represents major challenges. Given advances in geographic information systems (GIS), computational science and associated technologies, spatial optimization provides a possibility for improved problem solution. Essential here is how to represent facilities and demand in geographic space. In one respect, spatial abstraction as discrete points is generally assumed as it simplifies model formulation and reduces computational complexity. However, errors in derived solutions are likely not negligible, especially when demand varies continuously across a region. In another respect, although mathematical functions describing continuous distributions can be employed, such theoretical surfaces are generally approximated in practice using finite spatial samples due to a lack of complete information. To this end, the dissertation first investigates the implications of continuous surface approximation and explicitly shows errors in solutions obtained from fitted demand surfaces through empirical applications. The dissertation then presents a method to improve spatial representation of continuous demand. This is based on infill asymptotic theory, which indicates that errors in fitted surfaces tend to zero as the number of sample points increases to infinity. The implication for facility location modeling is that a solution to the discrete problem with greater demand point density will approach the theoretical optimum for the continuous counterpart. Therefore, in this research discrete points are used to represent continuous demand to explore this theoretical convergence, which is less restrictive and less problem altering compared to existing alternatives. The proposed continuous representation method is further extended to develop heuristics to solve the continuous Weber and multi-Weber problems, where one or more facilities can be sited anywhere in continuous space to best serve continuously distributed demand. Two spatial optimization approaches are proposed for the two extensions of the Weber problem, respectively. The special characteristics of those approaches are that they integrate optimization techniques and GIS functionality. Empirical results highlight the advantages of the developed approaches and the importance of solution integration within GIS. / Dissertation/Thesis / Ph.D. Geography 2012
6

Spatial Optimization Techniques for School Redistricting

Biswas, Subhodip 03 June 2022 (has links)
In countries like the US, public school systems function through school districts, which are geographical areas where schools share the same administrative structure and are often coterminous with the boundary of a city or a county. School districts play an important role in the functioning of society. In a well-run school district with safe and well-functioning schools, graduating enough students can enhance the quality of life in its area. Conversely, a poorly run district may cause growth in the area to be far less than surrounding areas, or even a decline in population over time. To promote the efficient functioning of the school district, the boundaries of public schools are redrawn from time to time by the school board/planning officials. In the majority of the cases, this process of redrawing the school boundaries, also called school redistricting or school boundary formation, is done manually by the planners and involves hand-drawn maps. Given the rapid advancements in GIS made in the last decade and the availability of high-quality geospatial data, we opine that an objective treatment of the school redistricting problem by a data-driven model can assist the school board/ decision-makers by providing them with automated plans. These automated plans may serve as possible suggestions to the planners, who can adapt them to prepare their own plans in the way they see fit based on their subjective knowledge and expertise. In this dissertation, we propose algorithmic techniques for solving the problem of (school) redistricting, which is an NP-hard problem. We primarily investigate optimization-based algorithms for solving the problem. Our approaches include (i) clustering, (ii) local search, and (iii) memetic algorithms. We also propose ways of solving the problem using exact methods and fair redistricting techniques based on ethical considerations. The techniques developed here are generic enough to be applied to other redistricting problems with some degree of modification in the objective function and constraint-handling techniques. The source code and corresponding datasets are available at https://github.com/subhodipbiswas/schoolredistricting. / Doctor of Philosophy / In many countries, public school systems function through school districts, which are geographical areas where schools share the same administrative structure and are often coterminous with the boundary of a city or a county. To promote efficient functioning of the school district, the boundaries of public schools are redrawn from time to time by the school board/planning officials. In the majority of the cases, this process of redrawing the school boundaries, also called school redistricting, is done manually by the planners and involves hand-drawn maps. Given the rapid advancements in GIS made in the last decade and the availability of high-quality geospatial data, we opine that an objective treatment of the school redistricting problem by a data-driven model can assist the school board/ decision-makers by providing them with automated plans. In this presentation, we propose algorithmic techniques for solving the school redistricting problem. Our approaches include (i) clustering, (ii) local search, and (iii) memetic algorithms. We also show that MCMC-based techniques can aid in enabling exact methods to operate on this problem. Lastly, we briefly highlight ethical considerations involved in the process of school redistricting and throw light on some ways to devise more ethically-aware strategies for doing school redistricting. The results indicate that the proposed methods could be a valuable decision-making tool for school officials.
7

Reliable p-hub location problems and protection models for hub network design

Kim, Hyun 11 September 2008 (has links)
No description available.
8

Competitive location modeling in a broadband access market: an integrated approach using GIS and spatial optimization

Lee, Gunhak 11 September 2008 (has links)
No description available.
9

Räumliche Optimierung der Bestandesstruktur unter Berücksichtigung von Einzelbaumeffekten

Herrmann, Isabelle 17 July 2014 (has links) (PDF)
In dieser Dissertation werden erstmals Kenntnisse über ökologische Felder von Einzelbäumen mit Methoden der räumlichen Optimierung kombiniert, um ein Werkzeug zu schaffen, mit dem Empfehlungen für die Strukturierung von Beständen erarbeiten werden können. Dabei waren drei unterschiedliche waldbauliche Problemstellungen Ausgangspunkt der Arbeit. Die ausführliche Beschreibung der Probleme führte zur Ableitung eines allgemeinen Optimierungsproblems, das nach optimalen Stammverteilungsplänen bzgl. verschiedener, waldbaulicher Zielsetzungen sucht. Der erster Schwerpunkt war die mathematische Herleitung der Zielgrößen. Hierbei wurde die Idee der Einzelbaumeffekte und das Konzept der ökologischen Felder verwendet, um die Zielgrößen aus den Einzelbaumeffekten zu entwickeln. Der zweite Schwerpunkt umfasste die Suche nach einem geeigneten Optimierungsmodell, mit dem die Horizontalstruktur eines Bestandes basierend auf weitreichenden, stetigen Einzelbaumeffekten räumlich optimiert werden konnte. Der gegebene Überblick zum Stand der Forschung bzgl. der räumlichen Optimierung in der Forstwissenschaft zeigte auf, dass nur Teilaspekte des allgemeinen Optimierungsproblems bisher modelliert worden sind. Von den vier daraufhin neu entwickelten Optimierungsmodellen wurden ein kontinuierliches und ein diskretes Modells nach der Auswertung der Eigenschaften weiterverwendet. Die Bewertung von verschiedenen, vorgestellten Nachbarschaftsdefinitionen und Varianten von lokalen Suchverfahren, Meta- und Hybridheuristiken führte zur Verwendung von k-opt für das diskrete Optimierungsmodell, von Compass Search für das kontinuierliche Optimierungsmodell und von Threshold Accepting und Iterated Local Search für beide Modelle. Für alle drei Optimierungsprobleme wurden jeweils zwei Tests je Algorithmus mit einer in C++ implementierten Optimierungssoftware durchgeführt. Beim ersten Test sollten in kurzer Zeit wiederholt gute Lösungen berechnet werden, während im zweiten Test wesentlich mehr Funktionswertberechnungen zur Verfügung standen, um eine sehr gute Lösung zu erhalten. Die Auswertung der Testrechnungen zeigte, dass das diskrete Optimierungsmodell dem kontinuierlichen Modell außer bei einem geringen Bestockungsgrad des Bestandes vorzuziehen ist. Die Zielfunktionsdefinitionen hatten wesentlichen Einfluss auf die Lösungen, vor allem bei gegenläufigen Zielen. Sehr gute Lösungen wiesen dabei charakteristische Verteilungsschemata der Baumpositionen auf, die nur durch eine Optimierung und nicht durch das wiederholte, zufällige Verteilen von Bäumen gefunden werden konnten. Für das diskrete Modell lieferte Threshold Accepting vor 2-opt und Iterated Local Search fast immer die besten Ergebnisse. 4-opt war immer deutlich schlechter als die anderen Algorithmen. Threshold Accepting berechnete sowohl sehr schnell gute Lösungen und als auch die besten Lösungen, wenn eine intensive Suche mit sehr vielen Funktionswertberechnungen möglich war.
10

A Threshold Coverage Flow-Refueling Location Model to Build a Critical Mass of Alternative-Fuel Stations

January 2015 (has links)
abstract: In order to address concerns about the dominance of petroleum-fueled vehicles, the transition to alternative-fueled counterparts is urgently needed. Top barriers preventing the widespread diffusion of alternative-fuel vehicles (AFV) are the limited range and the scarcity of refueling or recharging infrastructures in convenient locations. Researchers have been developing models for optimally locating refueling facilities for range-limited vehicles, and recently a strategy has emerged to cluster refueling stations to encourage consumers to purchase alternative-fuel vehicles by building a critical mass of stations. However, clustering approaches have not yet been developed based on flow-based demand. This study proposes a Threshold Coverage extension to the original Flow Refueling Location Model (FRLM). The new model optimally locates p refueling stations on a network so as to maximize the weighted number of origin zones whose refuelable outbound round trips exceed a given threshold, thus to build critical mass based on flow-based demand on the network. Unlike other clustering approaches, this model can explicitly ensure that flow demands “covered” in the model are refuelable considering the limited driving range of AFVs. Despite not explicitly including local intra-zonal trips, numerical experiments on a statewide highway network proved the effectiveness of the model in clustering stations based on inter-city flow volumes on the network. The model’s policy implementation will provide managerial insights for some key concerns of the industry, such as geographic equity vs. critical mass, from a new perspective. This project will serve as a step to support a more successful public transition to alternative-fuel vehicles. / Dissertation/Thesis / Masters Thesis Geography 2015

Page generated in 0.1311 seconds