Spelling suggestions: "subject:"eometry -- study anda teaching."" "subject:"eometry -- study ando teaching.""
61 |
Os problemas clássicos da Grécia antigaPinto, Luis Paulo [UNESP] 07 August 2015 (has links) (PDF)
Made available in DSpace on 2016-04-01T17:54:41Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-08-07. Added 1 bitstream(s) on 2016-04-01T18:00:22Z : No. of bitstreams: 1
000860278.pdf: 2071280 bytes, checksum: 63adcc6e7dc4ad964bd3e3c783e1b479 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Na Grécia Antiga, os sábios buscaram a resolução de problemas que se baseavam na construção geométrica utilizando exclusivamente dois instrumentos: a régua não graduada e o compasso. Alguns desses problemas se tornaram clássicos por exigirem, dentro do desenvolvimento da Matemática, grandes esforços para se chegar a uma solução. São eles: a duplicação de um cubo, determinando o lado de um cubo, cujo volume é o dobro do volume de um outro cubo dado, a trisseção de um ângulo, que é dividir um ângulo em três partes iguais ou três ângulos de medidas exatamente iguais e a quadratura de um círculo, que consiste em construir um quadrado com área igual à de um círculo dado. Neste trabalho apresentaremos algumas construções geométricas com régua não graduada e compasso, algumas soluções encontradas que não estavam de acordo com as regras estabelecidas e desenvolveremos a fundamentação algébrica que demonstra a insolubilidade dos três problemas clássicos citados / In ancient Greece, the sages sought to solve problems that were based on geometric construction using only two instruments: non-graduated ruler and compass. Some of these problems have become classics because they require within the development of Mathematics, great efforts to reach a solution. They are: the duplication of the cube, the side of a cube whose volume is twice the volume of a given cube; the trisseção of an angle, which is to divide an angle into three equal parts or three measures angles exactly equal and the squaring of a circle, which consists of constructing a square with the same area as a given circle. In this work we present some geometric constructions with non-graded ruler and compass, some solutions that were not in accordance with the rules laid down and develop the algebraic reasoning which demonstrates the insolubility of the three classic problems cited
|
62 |
A História da Matemática no Ensino da Geometria: uma contextualização pela Razão Áurea / The History of Mathematics in the Teaching of Geometry: a contextualization by the Golden RatioLinck, Leandro Alex 22 December 2017 (has links)
Submitted by Leandro Linck (kcnil@hotmail.com) on 2018-01-21T20:23:13Z
No. of bitstreams: 2
Dissertação LEANDRO ALEX LINCK.pdf: 2170461 bytes, checksum: d769cc363aaec37e3138b9bd40123440 (MD5)
CARTA COMPROVANTE.pdf: 372309 bytes, checksum: 2646f4b17f94790a1a11ebf20930ef60 (MD5) / Rejected by Milena Rubi ( ri.bso@ufscar.br), reason: Bom dia Leandro!
Além da dissertação, você deve submeter também a carta comprovante devidamente preenchida e assinada pelo orientador, que não é esse documento que você colocou.
O modelo da carta encontra-se na página inicial do site do Repositório Institucional.
Att.,
Milena P. Rubi
Bibliotecária
CRB8-6635
Biblioteca Campus Sorocaba
on 2018-01-22T11:29:50Z (GMT) / Submitted by Leandro Linck (kcnil@hotmail.com) on 2018-01-24T19:00:42Z
No. of bitstreams: 2
Dissertação LEANDRO ALEX LINCK.pdf: 2170461 bytes, checksum: d769cc363aaec37e3138b9bd40123440 (MD5)
CARTA COMPROVANTE.pdf: 161486 bytes, checksum: bca05db8b41c4537c32511b4a6fdfc56 (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-01-25T13:42:25Z (GMT) No. of bitstreams: 2
Dissertação LEANDRO ALEX LINCK.pdf: 2170461 bytes, checksum: d769cc363aaec37e3138b9bd40123440 (MD5)
CARTA COMPROVANTE.pdf: 161486 bytes, checksum: bca05db8b41c4537c32511b4a6fdfc56 (MD5) / Approved for entry into archive by Milena Rubi ( ri.bso@ufscar.br) on 2018-01-25T13:42:36Z (GMT) No. of bitstreams: 2
Dissertação LEANDRO ALEX LINCK.pdf: 2170461 bytes, checksum: d769cc363aaec37e3138b9bd40123440 (MD5)
CARTA COMPROVANTE.pdf: 161486 bytes, checksum: bca05db8b41c4537c32511b4a6fdfc56 (MD5) / Made available in DSpace on 2018-01-25T13:42:46Z (GMT). No. of bitstreams: 2
Dissertação LEANDRO ALEX LINCK.pdf: 2170461 bytes, checksum: d769cc363aaec37e3138b9bd40123440 (MD5)
CARTA COMPROVANTE.pdf: 161486 bytes, checksum: bca05db8b41c4537c32511b4a6fdfc56 (MD5)
Previous issue date: 2017-12-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The present work intends to extend the knowledge about a very interesting and instigating theme that is the Golden Ratio, to recover its history and its importance mainly within Geometry, to argue about the importance of this Ratio in the construction of mathematical knowledge, identifying the possible connections with geometry and the most different areas of knowledge. Not leaving aside the survey on the History of Mathematics as a form of teaching methodology, because one has the awareness that every teaching process should be based on its history, and could not be different in Mathematics. Also perform a survey on what are the guidelines of the National Curricular Parameters and the Curriculum of the State of São Paulo for the teaching of Geometry and from this information to develop activities involving the Golden Ratio and Geometry, aiming to lead the student through different activities, to build their mathematical knowledge. The five activities proposed in this work were designed in such a way as to be interdisciplinary in order to show students that mathematics can be applied in several areas of knowledge that make use of Geometry and thus propose the following research question: "What contributions do the history of mathematics contextualized by golden reason can bring to the teaching of geometry?" This is a bibliographic review research. The analysis carried out regarding the teaching of geometry presupposes that many are the contributions in the different school series, presented by the contextualization of Mathematics with the use of the Golden Ratio. The study carried out through the contextualization can awaken in the student a greater motivation, since they can relate everyday situations to the theory learned in the classroom, and consequently helps in the construction of knowledge. / O presente trabalho pretende ampliar o conhecimento sobre um tema bastante interessante e instigante que é a Razão Áurea, resgatar sua história e sua importância principalmente dentro da Geometria, argumentar sobre a importância dessa Razão na construção do conhecimento matemático, identificando as possíveis conexões com geometria e as mais diferentes áreas do conhecimento. Não deixando de lado o levantamento sobre a História da Matemática como forma de Metodologia de ensino, pois se tem a consciência de que todo processo de ensino deve estar pautado na sua história, e não poderia ser diferente na Matemática. Realizar também um levantamento sobre quais são as orientações dos Parâmetros Curriculares Nacionais e o do Currículo do Estado de São Paulo para o ensino da Geometria e a partir dessas informações desenvolver atividades que envolvam a Razão Áurea e a Geometria, visando levar o aluno, através de atividades diferenciadas, a construir o seu conhecimento matemático. As cinco atividades propostas neste trabalho foram elaboradas de tal forma que fossem interdisciplinares, visando mostrar aos alunos que a matemática pode ser aplicada em diversas áreas do conhecimento que façam uso da Geometria e desta forma propor a seguinte questão de pesquisa: “Que contribuições a história da matemática contextualizada pela razão áurea pode trazer para o ensino da geometria?”. Trata-se de uma pesquisa de revisão bibliográfica. A análise realizada no que se diz respeito ao ensino da geometria pressupõe que muitas são as contribuições nas diferentes séries escolares, apresentadas pela contextualização da Matemática com a utilização da Razão Áurea. O estudo realizado através da contextualização pode despertar no aluno uma maior motivação, pois podem relacionar situações do cotidiano com a teoria aprendida em sala de aula, e consequentemente, auxilia na construção do conhecimento. / CAPES: 5564175
|
63 |
A importância do ensino de geometria nos anos iniciais do ensino fundamental : razões apresentadas em pesquisas brasileiras / The importance of teaching geometry in the early years of elementary school : reasons presented by Brazilian researchesManoel, Wagner Aguilera, 1988- 24 August 2018 (has links)
Orientador: Sergio Apparecido Lorenzato / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Educação / Made available in DSpace on 2018-08-24T16:41:31Z (GMT). No. of bitstreams: 1
Manoel_WagnerAguilera_M.pdf: 1983534 bytes, checksum: 807a0f378d4561eceb4f90993daba0a1 (MD5)
Previous issue date: 2014 / Resumo: O ensino e a aprendizagem de Geometria é tema presente em diversas pesquisas em Educação Matemática. Muitas pesquisas apontam que nos Anos Iniciais do Ensino Fundamental (AIEF), nota-se ainda uma maior ênfase no ensino de outras áreas da Matemática, em comparação aos conteúdos relacionados aos conhecimentos geométricos, mas apontam também que é importante ensinar Geometria nos AIEF. Muitos autores consideram fundamental a presença da Geometria no ambiente escolar, seja pela importância dessa disciplina na cultura e na história da humanidade, seja pelas habilidades cognitivas que ela desenvolve, ou mesmo pelo fato de ela estar presente no cotidiano do aluno. Diante dessa problemática, a questão que emergiu e que norteou esta pesquisa foi: quais as razões para ensinar Geometria nos AIEF apresentadas pelos autores de pesquisas brasileiras no período de 2006 a 2011? O objetivo dessa investigação foi realizar uma compilação e um estudo analítico da importância de se ensinar Geometria nos AIEF e produzir novas interpretações e resultados. A metodologia escolhida foi a pesquisa bibliográfica do tipo meta-análise qualitativa e o material a ser analisado foram teses e dissertações com o tema Geometria nos Anos/Séries Iniciais do Ensino Fundamental. As razões encontradas na literatura foram classificadas em onze eixos de análises (currículo, história, outras áreas do conhecimento, natureza, cotidiano, afetividade, resolução de problemas, habilidade cognitivas, pensamento crítico, apreciação estética e criatividade). Desses eixos, os que foram identificados em um número menor de pesquisas foram: natureza, criatividade e apreciação estética, enquanto habilidades cognitivas foi o eixo em que os autores apresentaram maior ênfase para justificar a importância dessa disciplina. Por meio da nossa meta-análise, concluímos também que existe falta de situações de aprendizagens que justifiquem a importância de ensinar Geometria, ou seja, poucos autores exemplificaram com suas experiências como docentes e/ou formadores de professores por que ensinar Geometria para seus alunos / Abstract: Teaching and learning Geometry is a topic found in several studies on Mathematics Education. Many researches show that in the early years of elementary school there is a higher emphasis on teaching other areas of mathematics compared to teaching subjects related to Geometry. These researches also emphasize the importance of teaching Geometry in the early years of elementary school. Many authors believe the presence of Geometry in schools are fundamental due to its importance in human history and culture, also due to cognitive skills it develops, or even because of its presence in the student¿s daily life. Facing these problems, the question that emerged and guided this paper was: "What are the motives to teach Geometry in the early years of elementary school presented by Brazilian researches¿ authors from 2006 to 2011?" The purpose of this study was to compile and to make an analytical study of the importance of teaching Geometry in the early years of elementary school and to produce new results and interpretations. The methodology used was the qualitative meta-analysis bibliography research, and the material analyzed was thesis and dissertations about Geometry in the early years of elementary school. The arguments found in the literature were classified in eleven axis of analysis: Curriculum, History, Other Areas of Knowledge, Nature, Quotidian, Affectivity, Problems Solving, Cognitive Abilities, Critical Thinking, Aesthetics Appreciation and Creativity. Among these axis, there were three of them that were identified in fewer researches: Nature, Creativity and Aesthetics Appreciation, while Cognitive Abilities was the axis which got more emphasis by the authors to justify the importance of Geometry. Through our meta-analysis, we concluded that there is a lack of educational examples to support the importance of teaching geometry. In other words, few authors used their experience as teachers and/or as teacher¿s educators to show why geometry should be taught to their students / Mestrado / Ensino e Práticas Culturais / Mestre em Educação
|
64 |
Combinatória e probabilidade com aplicações no ensino de geometria / Combinatorics and probability with applications on geometry teachingMastropaulo Neto, Vicente, 1969- 25 August 2018 (has links)
Orientador: Antônio Carlos do Patrocinio / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T09:32:43Z (GMT). No. of bitstreams: 1
MastropauloNeto_Vicente_M.pdf: 1971257 bytes, checksum: 1c78e3e9085d370b2a40221cbcfe39a5 (MD5)
Previous issue date: 2014 / Resumo: Este trabalho aborda o tema Combinatória e Probabilidade com aplicações no ensino de Geometria e tem como objetivo principal servir de apoio aos professores de Matemática da escola básica, fornecendo sugestões para a elaboração de problemas que reúnem conteúdos distintos do currículo, tomando Combinatória e Probabilidade como temas centrais. Os problemas aqui apresentados são voltados ao 3º ano do Ensino Médio e devem ser aplicados, preferencialmente, no quarto bimestre, no intuito de promover uma revisão geral, com ênfase em problemas de Geometria. Apresentamos inicialmente uma contextualização histórica da teoria das probabilidades, além da origem da probabilidade geométrica através do clássico problema da agulha de Buffon. Prosseguimos com uma fundamentação teórica e algumas aplicações dos temas centrais, Combinatória e Probabilidade, e concluímos com uma sequência didática aplicada em sala de aula com doze problemas que relacionam os princípios elementares de Combinatória e Probabilidade aos conceitos básicos de Geometria Plana, Geometria Espacial e Geometria Analítica / Abstract: This paper approaches the topic of Combinatorics and Probability with applications to the teaching of Geometry and has as its main objective to serve as support to Elementary School mathematics teachers, providing them with suggestions to elaborate problems which gather different contents of the curriculum, taking Combinatorics and Probability as their main topics. The problems presented here are thought for the 3rd grade of high school and must be preferably applied during the fourth bimester, aiming to promote a general review, with emphasis on Geometry problems. We initially present a historical contextualization of the probability theory besides the origin of geometric probability through Buffon's needle classic problem. Next we continue with a theoretical fundamentation and some applications of the central topics, Combinatorics and Probability, and then we conclude with a didactic sequence used in classroom with twelve problems which associate the main principles of Combinatorics and Probability with the basic concepts of Plane Geometry, Spatial Geometry and Analytical Geometry / Mestrado / Matemática em Rede Nacional - PROFMAT / Mestre em Matemática em Rede Nacional - PROFMAT
|
65 |
A contribuição dos estudos brasileiros para o ensino de geometria no ensino primário em Timor-Leste : o caso dos materiais manipulativos / The contribution of brazilian studies for teaching geometry in primary education in East Timor : the case of materials manipulativePereira, Olinda, 1970- 20 August 2018 (has links)
Orientador: Sérgio Apareciddo Lorenzato / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Educação / Made available in DSpace on 2018-08-20T15:26:23Z (GMT). No. of bitstreams: 1
Pereira_Olinda_M.pdf: 2269771 bytes, checksum: 44201c49e7ab617c3f14caf22657507e (MD5)
Previous issue date: 2012 / Resumo: O contexto multilinguístico e a precária formação inicial e continuada docente são desafios para a melhoria da Educação no Timor-Leste. No caso do ensino da Matemática, essa situação é agravada por se tratar de disciplina popularmente tida como difícil para ser aprendida e com uma parte, a Geometria, que raramente é ensinada. Daí surgiu a questão central desta pesquisa: "Que subsídios didático- pedagógicos podem ser obtidos de alguns estudos brasileiros para o ensino e aprendizagem da Geometria no nível primário do Timor-Leste?" A metodologia da pesquisa utilizada foi a bibliográfica, fundamentada principalmente nas publicações de Lorenzato (1995, 2000, 2006 e 2008), Passos (2003), Nacarato (2003), Pavanello (1993), Pais (2000 e 2002), Kaleff (1994), Fainguelernt (1999), Macedo (1991), Fiorentini (1990, 2006 e 2009), Grando (1995 e 2004). Estas obras, sob a forma de livros, artigos, anais e teses, focalizam o ensino da geometria apoiado em materiais didáticos e apresentam limites e potencialidades de sua utilização em sala de aula. Com a escolha de alguns materiais manipuláveis em função da versatilidade deles à composição de figuras por justaposição, foi produzido um texto para auxiliar professores no ensino da geometria. Ele favorece o desenvolvimento da percepção espacial e da criatividade dos alunos. É apresentado sob a forma de atividades que visam à formação de polígonos ou painéis e que navegam desde a criação de uma figura qualquer até a aprendizagem do cálculo das áreas das principais figuras planas, sem a memorização de fórmulas. Baseado nas ideias dos autores mencionados, o texto representa uma contribuição didática diferente para o ensino da geometria no Timor-Leste. / Rezumu: Kontexto lian barak no laiha formasaun hosi hahu no kontinuasaun nian ba dosente sira ne,e hanesan desafio atu bele halo diak liu edukasaun iha Timor-Leste. Kaso hanesan matematika, situasaun ida ne,e grave liu tan tanba nia hanesan diciplina nebe ema hotu dehan difícil atu bele aprende, no liu-liu parte ida hanesan geometria nebe dala ruma lahanorin. Hosi ne,e mosu questaun nebe centro ba peskisa ida ne,e" Subsidio didatiku pedagosiku saída maka bele foti hosi braisleiros sira nia estudos balun atu bele hanorin no aprende geometria ba nível primário iha Timor-Leste?" Peskisa ne usa metodologia bibliografia, liu-liu ba publikasaun sira hosi autores hanesan Lorenzato (1995, 2000, 2006 e 2008), Passos (2003), Nacarato (2003), Pavanello (1993), Pais (2000 e 2002), Kaleff (1994), Fainguelernt (1999), Macedo (1997), Fiorentini (1990, 2006 e 2009), Grando (1995,2004 e 2008). Obras sira ne,e sai hanesan livros, artigos, anais, dissertações no teses nebe nia foko usa matériai didatikus sira atu hanorin geometria no hatudo mos ninia limites no nia potencialidades sira hodi utiliza iha aula laran. Ho ida ne,e hili matérias manipulativos balun no hare oinsa nia funsaun versatilidade ba composisaun figuras nia ba justaposaun,hosi ne,e halo texto ida atu bela ajuda professor sira hodi hanorin geometria. Ho kriatividade iha grupo labarik sira nia ne,e bele desenvolve percepsaun espacial labarik sira nia, sira halo forma polígonos ou paneis sira nebe halo hahu hosi naran figura ida to,o apreden no hatene sura ninia haleu sira nebe principal ba figuras planas maibe laos memoriza ba formulas sira. Baseia ba autores sira nia hanoin nebe hatudo hosi testo ne,e, bele fó kontribuisaun didatika ida nebe lahanesan, hodi bele hanorin geometria iha Timor-Leste. / Abstract: The multi-linguistic context added to the precarious initial formation and continued teaching staff are challenges to the improvement in Education in East Timor. Regarding Math teaching, this situation is worsened because it is a subject popularly taken as difficult to be learned and usually with a topic - Geometry - that is rarely taught. From this situation appeared the main question of this research: 'What didactic-pedagogical information can be obtained from some Brazilian studies in order to improve Geometry teaching in elementary level in East Timor?" The research methodology used was bibliographical, substantiated mainly in publications of Lorenzato (1995, 2000, 2006 and 2008), Passos (2003), Nacarato (2003), Pavanello (1993), Pais (2000 and 2002), Kaleff (1994), Fainguelernt (1999), Macedo (1997), Fiorentini (1990, 2006 and 2009), Grando (1995, 2004 and 2008). These books, articles, annals and theses focus on the Geometry teaching based on didactic materials that present limits and potentiality of its utilization in classroom. Choosing some manageable materials due to their versatility to compose juxtaposed pictures, a text was produced in order to assist teachers with Geometry. This text encourages the development of spatial perception and creativity in the students. It presents activities that aim the polygonal or panels formation and that go through the creation of any picture to the learning of area calculation of the main flat pictures without the memorization of formulas. Based on the ideas of the previously named authors, the text represents a different didactic contribution to the Geometry teaching in East Timor. / Mestrado / Ensino e Práticas Culturais / Mestre em Educação
|
66 |
An analysis of how visualisation processes can be used by teachers participating in an intervention programme to teach for conceptual understanding of geometryMuhembo, Gottfried Mbundu January 2018 (has links)
Visualisation in general and visualisation processes in particular have received much attention in the mathematics education research literature. Literature suggests that the appropriate use of visualisation helps learners to develop their conceptual understanding and skills of geometry as it allows them to visually interpret and understand fundamental mathematical and geometrical concepts. It is claimed that visual tools play an important role in communicating mathematical ideas through diagrams, gestures, images, sketches or drawings. Learning mathematics through visualisation can be a powerful tool to explore mathematical problems and give meaning to mathematical concepts and relationships between them. This interpretive case study focused on how selected teachers taught concepts in geometry through visualisation processes for conceptual understanding as a result of an intervention programme. The study was conducted at four high schools by four mathematics teachers in the Kavango East Region in Northern Namibia. The participants were involved in a three-week intervention programme and afterwards taught three lessons each on the topic of geometry. The data collection method of this research was: focus group and stimulus recall interviews, classroom observations and recorded videos. This research is located in constructivism. I used vertical and horizontal analysis strategies to analyse the data. My analytical instrument consisted of an observation schedule which I used in each lesson to identify how each of the visualisation processes was evident in each of the observed lessons. This study revealed that the participant teachers used visualisation processes in most of their lessons and these processes were used accurately in line with the requirements of the grade 8 mathematics syllabi. The visualisation processes were used through designed visual materials, posters and through the use of geometrical objects such as chalkboard ruler, protractor and compass. The results from this study also confirmed that visualisation processes can be a powerful instructional tool for enhancing learners’ conceptual understanding of geometry.
|
67 |
Cônicas e quádricas : medidas de superfïcies e volumes /Quagliato, Carlos Augusto Vicente. January 2019 (has links)
Orientador: Marcelo Reicher Soares / Banca: Valter Locci / Banca: Angela Pereira Rodrigues Moreira / Resumo: A partir de um estudo de cubagem de tora de eucalipto por semelhança de tronco de cone de base elíptica, efetuando os cálculos de volume por semelhança ao tronco de cone de base circular e comprovação de resultado por cálculo diferencial integral, realiza-se um estudo histórico sobre a área do círculo para se chegar à área da elipse pelo desenvolvimento apresentado por Arquimedes nesse assunto. Com apresentação do teorema da medida da área da elipse, demonstrado pela dupla redução ao absurdo e utilização do método da exaustão de Eudoxo. Na sequência, verificamos que esse desenvolvimento matemático foi inspirador para o desenvolvimento do cálculo diferencial integral e para Cavalieri enunciar dois famosos princípios, um para o cálculo de área e outro para o de volume, estes são usados nos próximos cálculos de área da elipse e volume de sólidos elípticos. Os princípios de Cavalieri são teoremas e apresentamos as demonstrações pelo cálculo diferencial integral, também usado como alternativa aos cálculos de volume dos sólidos elípticos / Abstract: From a study of eucalyptus log cube by the similarity of an elliptical cone trunk, performing the volume calculations by resemblance to the circular base cone trunk and verification of the result by integral differential calculus, a historical study is carried out on the area of the circle and to reach the area of the ellipse by the development presented by Archimedes on this subject. Presentation of the theorem of the measurement of the area of the ellipse, demonstrated by the double reduction to the absurd and use of the Eudoxo exhaustion method. It follows that this mathematical development was inspiring for the development of integral differential calculus and for Cavalieri to enunciate two famous principles, one for area calculation and another for volume, which are used in the next area calculations of the ellipse and volume of elliptical solids. The principles of Cavalieri are theorems and the demonstrations were presented by integral differential calculus, also used as an alternative to volume calculations of elliptical solids / Mestre
|
68 |
Relation of visuospatial and analytical skills and span of short-term memory to academic achievement in high school geometryBrown, Martha 05 September 2009 (has links)
The purpose of this research was to investigate hypothesized relations of visuospatial and logical reasoning skills, and span of short-term memory to achievement in geometry. In addition, major subfactors of visuospatial ability (visualization, speeded rotations, spatial orientation, and disembedding) were assessed to determine which were significant predictors of geometry achievement. Vernon's (1965) model of intelligence and Baddeley's model of working memory provided the theoretical framework for these hypotheses.
Subjects (N = 110) were students in seven sophomore level geometry classes in two schools in southwest Virginia. Cognitive measures of speeded rotations, visualization, spatial orientation, disembedding, Gestalt closure, logical reasoning, and short-term memory span were administered. Two measures of geometry achievement were used: The standardized New York Regents Geometry Exam, and z-transformations of the classroom final grade.
A model of geometry achievement is proposed and major predictions of the model were supported. within this sample, regression analysis showed the measures of visualization, logical reasoning, and short-term memory predicted achievement on the New York Regents Geometry Exam.
Separate regression analyses for each gender revealed visualization predicted geometry achievement for the girls, while logical reasoning and short-term memory span predicted geometry achievement for the boys. Gender differences favoring boys were found on measures of speeded rotations, spatial orientation, and Gestalt closure. Girls had significantly higher scores on the measure of short-term memory span and the classroom measure of geometry achievement. / Master of Science
|
69 |
Student's van Hiele levels of geometric thought and conception in plane geometry: a collective case study of Nigeria and South AfricaAtebe, Humphrey Uyouyo January 2009 (has links)
This study is inspired by and utilises the van Hiele theory of geometric thought levels, currently acclaimed as one of the best frameworks for studying teaching and learning processes in geometry. The study aims both to explore and explicate the van Hiele levels of geometric thinking of a selected group of grade 10, 11 and 12 learners in Nigerian and South African schools. The study further aims to provide a rich and indepth description of the geometry instructional practices that possibly contributed to the levels of geometric conceptualisation exhibited by this cohort of high school learners. This collective case study, presented in two volumes, is oriented within an interpretive research paradigm and characterised by both qualitative and quantitative methods. The sample for the study comprised a total of 144 mathematics learners and 6 mathematics teachers from Nigeria and South Africa. They were selected using both purposive and stratified sampling techniques. In using the van Hiele model to interrogate both learners’ levels of geometric conceptualisation and teaching methods in geometry classrooms, the study employs a qualitative and qunatitative approach to the data-collection process, involving the use of questionnaires (in the form of various pen-and-paper tests, hands-on activity-based tests), interviews and classroom videos. Although the data analysis was done largely through descriptive statistics, the whole process inevitably incorporated elements of inferential statistics (e.g. ANOVA and Tukey HSD post-hoc test) in the quest for indepth analysis and deeper interpretation of the data. Learners were assigned to various van Hiele levels, mainly according to Usiskin’s (1982) forced van Hiele level determination scheme. The whole process of analysing the classroom videos involved a consultative panel of 4 observers and 3 critical readers, using the checklist of van Hiele phase descriptors to guide the analysis process. Concerning learners’ levels of geometric conceptualisation, the results from this study reveal that the most of the learners were not yet ready for the formal deductive study of school geometry, as only 2% and 3% of them were respectively at van Hiele levels 3 and 4, while 47%, 22% and 24% were at levels 0, 1 and 2, respectively. More learners from the Nigerian subsample (53%) were at van Hiele level 0 than learners from the South African subsample (41%) at this level. No learner from the Nigerian subsample was at van Hiele level 4, while 6% of the South African learners were at level 4. In general, learners from the Nigerian subsample had a poorer knowledge of school geometry than their peers from the South African subsample, as learners from the latter subsample obtained significantly higher mean scores in the van Hiele Geometry Test (VHGT) and each of the other tests used in this study. Results relating to gender differences in performance generally favour the male learners in this study. For each of the participating schools, learners’ van Hiele levels (as determined by their scores on the VHGT) strongly correlate with their performance in geometry content tests and mathematics generally. For each of the Nigerian and South African subsamples, for n ≤ 2, learners at van Hiele level n obtained higher means on nearly all the tests administered in this study than their peers at level n–1. This finding provides support for the hierarchical property of the van Hiele levels.
|
70 |
Difficulties of secondary three students in writing geometric proofsFok, Sui-sum, Selina., 霍遂心. January 2001 (has links)
published_or_final_version / Education / Master / Master of Education
|
Page generated in 0.1419 seconds