Spelling suggestions: "subject:"ginzburg landau"" "subject:"ginzburg candau""
41 |
Modelo de Ginzburg-Landau a partir da teoria de campos a temperatura finita / Ginzburg-Landau model as a field theory at finite temperatureThiago Cheble Alves Calza 10 February 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, utilizamos o formalismo de teorias quânticas de campos a temperatura finita, tal como desenvolvidas por Matsubara, aplicado a uma hamiltoniana de N campos escalares com autointeração quártica a N grande. Obtém-se uma expressão, na primeira aproximação quântica, para o coeficiente do termo quadrático da hamiltoniana ("massa quadrada"), renormalizado, como função da temperatura. A partir dela, estudamos o processo de quebra espontânea de simetria. Por outro lado, a mesma hamiltoniana é conhecida como modelo de Ginzburg-Landau na literatura de matéria condensada, e
que permite o estudo de transições de fase em materiais ferromagnéticos. A temperatura é introduzida através do termo quadrático na hamiltoniana, de forma linear: é proporcional
à diferença entre a variável de temperatura e a temperatura crítica. Tal modelo, porém, possui validade apenas na regi~ao de temperaturas próximas à criticalidade. Como resultado de nossos cálculos na teoria de campos a temperatura finita, observamos que, numa faixa de valores em torno da temperatura crítica, a massa quadrática pode ser aproximada por uma relação linear em relação à variável de temperatura. Isso evidencia a compatibilidade da abordagem de Ginzburg-Landau, na vizinhança da criticalidade, com respeito ao formalismo de campos a temperatura finita. Discutimos também os efeitos
causados pela presença de um potencial químico no sistema. / In this work, we use the formalism of quantum field theories at finite temperature, as developed by Matsubara, applied to a Hamiltonian of N scalar fields with quartic self-interaction at N large. We get an expression in the first quantum approximation to
the coeficient of the quadratic term of the Hamiltonian ("square mass"), renormalized as a function of temperature. From it, we study the process of spontaneous symmetry breaking. On the other hand, the same Hamiltonian is known as Ginzburg-Landau model in the literature of condensed matter, and allows the study of phase transitions in ferromagnetic materials. The temperature is introduced through the quadratic term in the Hamiltonian of the linear form: is proportional to the difference between the temperature and the critical temperature. This model, however, is valid only in the region of temperatures close to criticality. As a result of our calculations in the field theory at finite temperature, we observed that in a range of values around the critical temperature, the quadratic mass can be approximated by a linear relation with the temperature. This highlights the compatibility of the Ginzburg-Landau approach, in the vicinity of criticality with respect to the formalism of finite temperature field. We also discuss the effects caused by the presence of a chemical potential in the system.
|
42 |
Sobre o modelo de supercondutividade de Ginzburg- Landau com efeito magnético em domínios delgados.Pereira, Jamil Viana 04 March 2005 (has links)
Made available in DSpace on 2016-06-02T20:28:28Z (GMT). No. of bitstreams: 1
DissJVP.pdf: 432420 bytes, checksum: e77b0ed9a46632c6024ca9ffbdcbf168 (MD5)
Previous issue date: 2005-03-04 / Universidade Federal de Minas Gerais / Devido a restrições dos caracteres especias, verifcar resumo em texto completo para download
|
43 |
Modelo de Ginzburg-Landau a partir da teoria de campos a temperatura finita / Ginzburg-Landau model as a field theory at finite temperatureThiago Cheble Alves Calza 10 February 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, utilizamos o formalismo de teorias quânticas de campos a temperatura finita, tal como desenvolvidas por Matsubara, aplicado a uma hamiltoniana de N campos escalares com autointeração quártica a N grande. Obtém-se uma expressão, na primeira aproximação quântica, para o coeficiente do termo quadrático da hamiltoniana ("massa quadrada"), renormalizado, como função da temperatura. A partir dela, estudamos o processo de quebra espontânea de simetria. Por outro lado, a mesma hamiltoniana é conhecida como modelo de Ginzburg-Landau na literatura de matéria condensada, e
que permite o estudo de transições de fase em materiais ferromagnéticos. A temperatura é introduzida através do termo quadrático na hamiltoniana, de forma linear: é proporcional
à diferença entre a variável de temperatura e a temperatura crítica. Tal modelo, porém, possui validade apenas na regi~ao de temperaturas próximas à criticalidade. Como resultado de nossos cálculos na teoria de campos a temperatura finita, observamos que, numa faixa de valores em torno da temperatura crítica, a massa quadrática pode ser aproximada por uma relação linear em relação à variável de temperatura. Isso evidencia a compatibilidade da abordagem de Ginzburg-Landau, na vizinhança da criticalidade, com respeito ao formalismo de campos a temperatura finita. Discutimos também os efeitos
causados pela presença de um potencial químico no sistema. / In this work, we use the formalism of quantum field theories at finite temperature, as developed by Matsubara, applied to a Hamiltonian of N scalar fields with quartic self-interaction at N large. We get an expression in the first quantum approximation to
the coeficient of the quadratic term of the Hamiltonian ("square mass"), renormalized as a function of temperature. From it, we study the process of spontaneous symmetry breaking. On the other hand, the same Hamiltonian is known as Ginzburg-Landau model in the literature of condensed matter, and allows the study of phase transitions in ferromagnetic materials. The temperature is introduced through the quadratic term in the Hamiltonian of the linear form: is proportional to the difference between the temperature and the critical temperature. This model, however, is valid only in the region of temperatures close to criticality. As a result of our calculations in the field theory at finite temperature, we observed that in a range of values around the critical temperature, the quadratic mass can be approximated by a linear relation with the temperature. This highlights the compatibility of the Ginzburg-Landau approach, in the vicinity of criticality with respect to the formalism of finite temperature field. We also discuss the effects caused by the presence of a chemical potential in the system.
|
44 |
Dualidade na teoria de Landau-Ginzburg da supercondutividade / Duality in the Landau-Ginzburg theory of the superconductivityBruno Fernando Inchausp Teixeira 25 May 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho abordamos a teoria de Ginzburg-Landau da supercondutividade (teoria GL). Apresentamos suas origens, características e resultados mais importantes. A idéia fundamental desta teoria e descrever a transição de fase que sofrem alguns metais de uma fase normal para uma fase supercondutora. Durante uma transição de fase em supercondutores do tipo II é característico o surgimento de linhas de fluxo magnético em determinadas regiões de tamanho
finito chamadas comumente de vórtices. A dinâmica destas estruturas topológicas é de grande interesse na comunidade científica atual e impulsiona incontáveis núcleos de pesquisa na área da supercondutividade. Baseado nisto estudamos como essas estruturas topológicas influenciam em uma transição de fase em um modelo bidimensional conhecido como modelo XY. No modelo XY vemos que os principais responsáveis pela transição de fase são os vórtices (na verdade pares de vórtice-antivórtice). Villain, observando este fato, percebeu que poderia tornar explícita a contribuição desses defeitos topológicos na função de partição do modelo XY realizando uma transformação de dualidade. Este modelo serve como inspiração para a proposta
deste trabalho. Apresentamos aqui um modelo baseado em considerações físicas sobre sistemas de matéria condensada e ao mesmo tempo utilizamos um formalismo desenvolvido recentemente na referência [29] que possibilita tornar explícita a contribuição dos defeitos topológicos na ação original proposta em nossa teoria. Após isso analisamos alguns limites clássicos e finalmente realizamos as flutuações quânticas visando obter a expressão completa da função
correlação dos vórtices o que pode ser muito útil em teorias de vórtices interagentes (dinâmica de vórtices). / In this work we introduced the Ginzburg-Landau theory of superconductivity (GL theory). We have shown your foundations, features and more important results. The fundamental idea of this theory is to describe the phase transition that some metals undergoes from a normal to a superconductor phase. During a phase transition in superconductors of type II is common the appearance of magnetic flux lines in given regions of finite size called of vortices. The knowledge of the dynamics of these vortices is of great importance in the current cientific community
and drives many research centers to study the superconductivity. In view of this we study how these vortices changes a phase transition in a bidimensional model known as XY model.In XY model one can show that the main responsible for the phase transition are the vortices (or still, vortice-antivortice pairs). Villain, noting this fact, realized that could to turn explicit the contribution of theses topological defects in the partition function of XY model making a duality transformation. This model inspired us to study the subject of this master thesis. We presented here a model based in physical considerations about systems of condensed matter. At the same time we used a formalism developed in reference [29] that permits to turn explicit the
contribution of these vortices in the original action proposed in our theory. Finally we analysed some classical limits and we looked for the quantum fluctuations to obtain the complete expression of the correlation function of vortices, whose utility is in the study of interacting vortices is wide (vortex dynamics).
|
45 |
Propagation des solitons spatio-temporels dans les milieux dissipatifs / Propagation of spatiotemporal solitons in dissipative mediaKamagate, Aladji 31 May 2010 (has links)
Ce mémoire de thèse présente une approche semi-analytique des différentes solutions solitons spatio-temporelles de l'équation cubique quintique de Ginzburg-Landau complexe étendue à (3+1)D (GL3D).La méthode semi-analytique choisie est celle des coordonnées collectives qui permet d'approcher le champ exact, dont l'expression analytique est inconnue, par une fonction d'essai, qui comporte un nombre limité de paramètres physiques.En appliquant cette procédure à l'équation GL3D, nous obtenons un système d'équations variationnelles qui gouverne l'évolution des paramètres de la balle de lumière. Nous montrons que cette approche des coordonnées collectives est incomparablement plus rapide que la procédure de résolution directe de l'équation GL3D. cette rapidité permet d'obtenir, en un temps record, une cartographie générale des comportements dynamiques des balles de lumière. Cette cartographie révèle une riche variété d'états dynamiques faite de balles de lumière stationnaires, oscillantes et rotatives.Finalement, les résultats de cette thèse prédisent l'existence de plusieurs familles de balles de lumière, et précisent les domaines respectifs de leurs paramètres physiques. Cette prédiction constitue un pas en avant dans les efforts entrepris ces dernières années en vue d'une démonstration expérimentale de ce type d'impulsions. / This thesis presents a semi-analytical approach for the search of (3+1)D spatio-temporal soliton solutions of the complex cubic-quintic Ginzburg-Landau equation (GL3D).We use a semi-analytical method called collective coordinate approach, to obtain an approximate profile of the unknown pulse field. This ansatz function is chosen to be a function of a finite number of parameters describing the light pulse.By applying this collective corrdinate procedure to the GL3D equation, we obtain a system of variational equations which give the evolution of the light bullet parameters as a function of the propagation distance. We show that the collective coordinate approach is uncomparably faster than the direct numerical simulation of the propagation equation. This permits us to obtain, efficiently, a global mapping of the dynamical behavior of light bullets, which unveils a rich variety of dynamical states comprising stationary, pulsating and rotating light bullets.Finally the existence of several types of light bullets is predicted in specific domains of the equation parameters. Altogether, this theoretical and numerical work may be a useful tool next to the efforts undertaken these last years observing light bullets experimentally.
|
46 |
Coexistência microscópica de antiferromagnetismo e supercondutividade não-convencional / Microscopic coexistence of antiferromagnetism and unconventional superconductivityAlmeida, Dalson Eloy, 1989- 20 February 2017 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-01T08:41:01Z (GMT). No. of bitstreams: 1
Almeida_DalsonEloy_D.pdf: 2470369 bytes, checksum: 93d3b945f62f374cfd686217575dda95 (MD5)
Previous issue date: 2017 / Resumo: Nesta tese estudamos a relação entre antiferromagnetismo e supercondutividade em pnictídeos à base de ferro. Este estudo será feito através da análise de uma energia livre de Ginzburg-Landau de parâmetros de ordem acoplados que será derivada de um modelo microscópico. Em particular, estamos interessados em saber se a transição entre os estados ordenados é de primeira ordem ou se as duas ordens podem coexistir. Para o caso de supercondutividade convencional as duas fases puras nunca coexistem. Entretanto, quando a supercondutividade é não-convencional e a condição de nesting perfeito não é satisfeita, pode haver um regime intermediário de coexistência microscópica das duas ordens. Nesta nova fase termodinâmica, as simetrias de rotação no espaço de spins, de reversão temporal e U(1) são quebradas simultânea e localmente. Logo, os canais de supercondutividade singleto e tripleto se misturam quanticamente. Em outras palavras, uma componente tripleto secundária do estado supercondutor é gerada. Os diagramas de fases do sistema são apresentados e analisamos também como flutuações magnéticas, acima da temperatura de Néel pura, afetam a temperatura de transição tripleto. Investigamos também o efeito da magnetização alternada no efeito Josephson, i.e., na supercorrente que flui através de uma junção entre dois supercondutores na fase de coexistência. Por fim, mas não menos importante, estudamos o efeito de proximidade em uma interface entre um supercondutor e um antiferromagneto. Veremos que os pares de Cooper podem penetrar a região magnética e em consequência, uma componente tripleto é induzida próximo da interface / Abstract: In this thesis, we study the interplay between antiferromagnetism and superconductivity in iron pnictides. This study will be done analyzing a free energy of coupled order parameters which will be derived from a microscopic model. In particular, we are interested if the phase transition between the ordered states is first order or if the two orders can coexist. For the case of conventional superconductivity, the two phases cannot coexist. However, when superconductivity is unconventional and the perfect nesting condition is not satisfied, there can exist an intermediary state of microscopic coexistence of the two orders. In this new thermodynamic phase, spin rotation, time reversal and U(1) symmetries are simultaneously and locally broken. Therefore, the singlet and triplet superconductivity channels are quantum mechanically mixed. In other words, a secondary triplet component is generated. The phase diagrams of the system are presented and we also analyze the effect of magnetic fluctuations above the pure Néel temperature on the triplet temperature transition. We also investigate the effects of the staggered magnetization on the Josephson effect, i.e., on the supercurrent that flows through a junction of two superconductors in the coexistence phase. Last, but not least, we study the proximity effect at an interface between a superconductor and an antiferromagnet. We will see that the Cooper pairs can penetrate the magnetic region and consequently a triplet component is induced near the interface / Doutorado / Física / Doutor em Ciências / 140834/2013-3 / 2342/15-4 / CNPQ / CAPES / BEX
|
47 |
Analysis of singularities in elliptic equations : the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and conformal geometry / Analyse des singularités dans les équations elliptiques : le modèle de superconductivité Ginzburg-Landau, le problème Lin-Ni-Takagi, le modèle Keller-Segel de chimiotaxie , et la géométrie conformeRomán, Carlos 15 December 2017 (has links)
Cette thèse est consacrée à l'analyse des singularités apparaissant dans des équations différentielles partielles elliptiques non linéaires découlant de la physique mathématique, de la biologie mathématique, et de la géométrie conforme. Les thèmes abordés sont le modèle de supraconductivité de Ginzburg-Landau, le problème de Lin-Ni-Takagi, le modèle de Keller-Segel de la chimiotaxie, et le problème de courbure scalaire prescrite. Le modèle de Ginzburg-Landau est une description phénoménologique de la supraconductivité. Une caractéristique essentielle des supraconducteurs de type II est la présence de vortex, qui apparaissent au-dessus d'une certaine valeur de la force du champ magnétique appliqué, appelée premier champ critique. Nous nous intéressons au régime de epsilon petit, où epsilon est l'inverse du paramètre de Ginzburg-Landau (une constante du matériau). Dans ce régime, les vortex sont au premier ordre des singularités topologiques de co-dimension 2. Nous fournissons une construction quantitative par approximation de vortex en dimension trois pour l'énergie de Ginzburg-Landau, ce qui donne une approximation des lignes de vortex ainsi qu'une borne inférieure pour l'énergie, qui est optimale au premier ordre et vérifiée au niveau epsilon. En utilisant ces outils, nous analysons ensuite le comportement des minimiseurs globaux en dessous et proche du premier champ critique. Nous montrons que, en dessous de cette valeur critique, les minimiseurs de l'énergie de Ginzburg-Landau sont des configurations sans vortex et que les minimiseurs, proche de cette valeur, ont une vorticité bornée. Le problème de Lin-Ni-Takagi apparait comme l'ombre (dans la littérature anglaise ``shadow'') du système de Gierer-Meinhardt d'équations de réaction-diffusion qui modélise la formation de motifs biologiques. Ce problème est celui de trouver des solutions positives d'une équation critique dans un domaine régulier et borné de dimension trois, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons des solutions à ce problème présentant un comportement explosif en un point du domaine, lorsqu'un certain paramètre converge vers une valeur critique. La chimiotaxie est l'influence de substances chimiques dans un environnement sur le mouvement des organismes. Le modèle de Keller-Segel pour la chimiotaxie est un système de diffusion-advection composé de deux équations paraboliques couplées. Ici, nous nous intéressons aux états stationnaires radiaux de ce système. Nous sommes alors amenés à étudier une équation critique dans la boule unité de dimension 2, avec une condition de Neumann homogène au bord. Dans cette thèse, nous construisons plusieurs familles de solutions radiales qui explosent à l'origine de la boule, et se concentrent sur le bord et/ou sur une sphère intérieure, lorsqu' un certain paramètre converge vers zéro. Enfin, nous étudions le problème de la courbure scalaire prescrite. Étant donnée une variété Riemannienne compacte de dimension n, nous voulons trouver des métriques conformes dont la courbure scalaire soit une fonction prescrite, qui dépend d'un petit paramètre. Nous supposons que cette fonction a un point critique qui satisfait une hypothèse de platitude appropriée. Nous construisons plusieurs métriques, qui explosent lorsque le paramètre converge vers zéro, avec courbure scalaire prescrite. / This thesis is devoted to the analysis of singularities in nonlinear elliptic partial differential equations arising in mathematical physics, mathematical biology, and conformal geometry. The topics treated are the Ginzburg-Landau model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and the prescribed scalar curvature problem. The Ginzburg-Landau model is a phenomenological description of superconductivity. An essential feature of type-II superconductors is the presence of vortices, which appear above a certain value of the strength of the applied magnetic field called the first critical field. We are interested in the regime of small epsilon, where epsilon is the inverse of the Ginzburg-Landau parameter (a material constant). In this regime, the vortices are at main order co-dimension 2 topological singularities. We provide a quantitative three-dimensional vortex approximation construction for the Ginzburg-Landau energy, which gives an approximation of vortex lines coupled to a lower bound for the energy, which is optimal to leading order and valid at the epsilon-level. By using these tools we then analyze the behavior of global minimizers below and near the first critical field. We show that below this critical value, minimizers of the Ginzburg-Landau energy are vortex-free configurations and that near this value, minimizers have bounded vorticity. The Lin-Ni-Takagi problem arises as the shadow of the Gierer-Meinhardt system of reaction-diffusion equations that models biological pattern formation. This problem is that of finding positive solutions of a critical equation in a bounded smooth three-dimensional domain, under zero Neumann boundary conditions. In this thesis, we construct solutions to this problem exhibiting single bubbling behavior at one point of the domain, as a certain parameter converges to a critical value. Chemotaxis is the influence of chemical substances in an environment on the movement of organisms. The Keller-Segel model for chemotaxis is an advection-diffusion system consisting of two coupled parabolic equations. Here, we are interested in radial steady states of this system. We are then led to study a critical equation in the two-dimensional unit ball, under zero Neumann boundary conditions. In this thesis, we construct several families of radial solutions which blow up at the origin of the ball and concentrate on the boundary and/or an interior sphere, as a certain parameter converges to zero. Finally, we study the prescribed scalar curvature problem. Given an n-dimensional compact Riemannian manifold, we are interested in finding bubbling metrics whose scalar curvature is a prescribed function, depending on a small parameter. We assume that this function has a critical point which satisfies a suitable flatness assumption. We construct several metrics, which blow-up as the parameter goes to zero, with prescribed scalar curvature.
|
48 |
Approximations elliptiques d'énergies singulières sous contrainte de divergence / Elliptic approximations of singular energies under divergence constraintMonteil, Antonin 07 December 2015 (has links)
Cette thèse est consacrée à l’étude de certains problèmes variationnels de type transition de phase vectorielle ou "phase-field" qui font intervenir une contrainte de divergence. Ces modèles sont généralement basés sur une énergie dépendant d’un paramètre qui peut représenter une grandeur physique négligeable ou qui est liée à une méthode d’approximation numérique par exemple. Une question centrale concerne alors le comportement asymptotique de ces énergies et des minimiseurs globaux ou locaux lorsque ce paramètre tend vers 0. Cette thèse présente différentes stratégies prenant en compte la contrainte de divergence. Elles seront illustrées à travers l’étude de deux modèles. Le premier est une approximation du modèle Eulérien pour le transport branché par un modèle de type phase-field avec divergence prescrite. Nous montrons comment une estimation uniforme de l’énergie, en fonction de la contrainte sur la divergence, permet d’établir un résultat de Gamma-convergence. Le second modèle, en lien avec la théorie du micromagnétisme, concerne des énergies de type Aviles-Giga dans un cadre vectoriel avec contrainte de divergence. Nous illustrerons dans quelle mesure la méthode d’entropie permet de caractériser les minimiseurs globaux. Dans certaines situations nous montrerons une conjecture de type De Giorgi concernant la symétrie 1D des minimiseurs globaux de l’énergie sous une contrainte au bord. / This thesis is devoted to the study of phase-field type variational models with divergence constraint. These models typically involve an energy depending on a parameter which represents a negligible physical quantity or is linked to some numerical approximation method for instance. A central question concerns the asymptotic behavior of these energies and of their global or local minimizers when this parameter goes to 0. We present different strategies which allow to take the divergence constraint into account. They will be illustrated in two models. The first one is a phase-field type approximation, involving a divergence constraint, of the Eulerian model for branched transportation. We illustrate how uniform estimates on the energy, depending on the constraint on the divergence, allow to establish a Gamma-convergence result. The second model, related to micromagnetics, concerns Aviles-Giga type energies for divergence-free vector fields. We use the entropy method in order to characterize global minimizers. In some situations, we will prove a De Giorgi type conjecture concerning the one-dimensional symmetry of global minimizers under boundary conditions.
|
49 |
Défauts de vorticité dans un supraconducteur en présence d'impuretésDos Santos, Mickaël 09 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage.
|
50 |
Vorticité dans le modèle de Ginzburg-Landau et quelques contributions en théorie de point fixeAydi, Hassen 02 June 2012 (has links) (PDF)
Cette habilitation porte sur l'étude de la vorticité dans le modèle de Ginzburg-Landau et quelques contributions en théorie de point fixe
|
Page generated in 0.0737 seconds