Spelling suggestions: "subject:"place dde mer"" "subject:"place dee mer""
11 |
Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump / Interactions entre le réseau microbien et la matière organique dans l'Océan Antarctique : impacts sur la pompe biologique à carboneDumont, Isabelle 03 July 2009 (has links)
The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of
phytoplanktonic blooms at time of ice melting.
The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense.
The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have
controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main
fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae.
Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which
are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice.
In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a
microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10
µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community.
Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and
organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./
L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond
de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa
production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace.
Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de
carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés : la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été.
La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur,
températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au
printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et
gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la
distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la
nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons.
De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques.
Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la
MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.
|
12 |
Iron biogeochemistry in the Antartic sea ice environmentLannuzel, Delphine January 2006 (has links)
Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
13 |
Importance de la glace de mer pour les oiseaux marins arctiquesCusset, Fanny 15 May 2024 (has links)
En Arctique, la productivité marine comprend deux floraisons successives de producteurs primaires, les algues deglace et le phytoplancton, qui sont étroitement liée à la phénologie de la glace de mer. Ceux-ci constituent la base du réseau trophique et fournissent l’énergie transférée vers les niveaux trophiques supérieurs. Ainsi, tout changement affectant la banquise arctique aura de fortes implications sur la phénologie des producteurs primaires, et affectera par conséquent tous les autres niveaux trophiques. Des études antérieures ont démontré le potentiel des Isoprénoides Hautement Ramifiés (HBIs) pour quantifier les contributions relatives des deux pools de producteurs primaires vers les niveaux trophiques supérieurs. Ici, nous combinons les HBIs avec les isotopes stables afin (i) d’évaluer si et à quel point les oiseaux marins arctiques dépendent de la glace de mer, et (ii) de déterminer si les variations de glace affectent leur écologie alimentaire et leur performance reproductive. L’étude cible deux espèces abondantes en Arctique présentant des écologies distinctes: le guillemot de Brünnich (Uria lomvia) et le fulmar boréal (Fulmarus glacialis). Pour chaque espèce, 60 œufs ont été récoltés sur l’île du Prince Leopold (Arctique canadien) pendant des années aux conditions de glace fortement contrastées (2010-2013). Les distributions en HBIs et les compositions isotopiques (carbone et azote) et énergétiques ont été analysées pour chaque œuf. Les résultats montrent que la présence de glace est bénéfique pour la performance reproductive des guillemots, avec des œufs plus gros et plus énergétiques pondus durant les années plus englacées. Les guillemots sont étroitement liés à la banquise et dépendent fortement de proies associées à la glace. Au contraire, les fulmars ne présentent aucune association claire aux communautés sympagiques, et les variations du couvert de glace n’affectent ni leur écologie alimentaire ni leur performance reproductive. De fait, les guillemots semblent plus vulnérables face aux changements climatiques à venir, alors que des espèces plus résilientes comme les fulmars pourraient en tirer avantage. Dans l’ensemble, notre étude souligne l’importance des approches multi-biomarqueurs afin de mieux appréhender l’importance des ressources sympagiques pour les prédateurs supérieurs au sein d’écosystèmes marins arctiques en pleine mutation. / In the Arctic, sea ice sets the clock for marine productivity. This includes two consecutive pulses of primary producers, sea-ice algae and phytoplankton, that constitute the basis of marine food webs and provide the energy transferred to higher trophic levels. As such, any change affecting Arctic sea-ice will have strong implications on the phenology of primary producers, and cascading effects on all other trophic levels. Previous studies demonstrated the potential of Highly Branched Isoprenoid biomarkers (HBIs) to quantify the relative contributions of the two pools of primary producers to higher trophic levels. Here, we combined HBIs with stable isotopesto (i) evaluate if and how much arctic seabird rely on sea ice, and (ii) determine if changes in sea ice affect their feeding ecology and reproductive performance. We focused on two Arctic species exhibiting contrasting ecologies: the thick-billed murre (Uria lomvia) and the northern fulmar (Fulmarus glacialis). For each species, 60 eggs were collected on Prince Leopold Island (Canadian Arctic) during years of highly contrasting ice conditions (2010-2013). Eggs were analysed for HBI distributions, isotopic (carbon and nitrogen) and energetic compositions. Results showed that murres were closely linked to sea ice and heavily relied on ice-associated prey. Sea ice presence was beneficial for murres’ reproductive performance, with larger and more energetic eggs laid during icier years. In contrast, fulmars did not exhibit a clear association with sympagic communities. Even large changes in sea ice did not seem to affect their feeding ecology or their reproductive performance. Murres therefore appear more vulnerable to changes and may become the losers of future climate shifts in the Arctic, while more resilient species such as fulmars might make the most of the situation. Overall, our study emphasises the importance of combining different biomarkers to better understand the importance of sympagic resources for top predators within changing Arctic marine ecosystems
|
14 |
Structure des communautés microbiennes dans les sédiments lacustres du Haut-ArctiqueLapointe, Anne-Marie 12 November 2023 (has links)
La vallée de Stuckberry a été touchée par une importante variabilité climatique au cours de l'Holocène et constitue actuellement un environnement en transition rapide en raison de la hausse des températures. Le retrait du glacier principal de la vallée a entraîné la formation de quatre lacs, où l'âge de chaque lac est proportionnel à la distance de l'océan Arctique. Les sédiments des lacs représentent un trésor d'informations sur les changements passés dans le bassin versant de la vallée de Stuckberry et fournissent une « mémoire à long terme » de la façon dont les lacs ont réagi à ces changements. L'objectif spécifique de l'étude est de caractériser les changements au fil du temps dans la structure des communautés microbiennes. Pour ce faire, l'ADN a été extrait à partir de couches de sédiments et la technologie de séquençage d'amplicons du gène de l'ARNr 16S a été utilisée pour la fraction bactérienne et archéenne et la technologie métagénomique shotgun a été utilisée dans quelques couches ciblées pour la fraction virale. Des analyses bio-informatiques et statistiques ont ensuite été effectuées pour réaliser l'affiliation taxonomique et les comparaisons de la diversité microbienne des couches des carottes de sédiments des lacs, l'hypothèse étant que la diversité microbienne varierait avec le temps et que cette dynamique reflèterait les changements environnementaux passés dans le bassin versant. Les résultats obtenus dans cette recherche nous permettent de conclure qu'il y a bien des changements au niveau des structures des communautés microbiennes au fil du temps qui semblent être influencées par les changements environnementaux subits par la vallée de Stuckberry et les variances entre les lacs semblent être dues à leur composition physico-chimique respective et à leur temps d'évolution différent. Ce travail contribue à de nouvelles connaissances sur les forces à l'origine des changements épisodiques et interannuels des communautés microbiennes. / Stuckberry Valley experienced significant climatic variability during the Holocene and is currently an environment in rapid transition due to rising temperatures. The retreat of the main glacier from the valley resulted in the formation of four lakes, where the age of each lake is proportional to its elevation above the Arctic Ocean. The sediments from these lakes represent a treasure trove of information about past changes in the Stuckberry Valley watershed and provide a "long-term memory" of how the lakes responded to these changes. The specific objective of the study is to characterize changes over time in the structure of microbial communities. To do this, DNA was extracted from discrete sediment layers followed by 16S rRNA gene amplicon sequencing for the bacterial and archaeal fractions and shotgun sequencing of a few targeted layers to characterize viruses. Bioinformatics and statistical analyses were then performed to determine taxonomic affiliations and to compare the microbial diversity of the sediment core layers of the four lakes, based on the hypothesis that the microbial diversity would vary over time and that this dynamic reflected past environmental changes in the watershed. Our results suggest that the structure of the microbial community over time was influenced by environmental changes in Stuckberry Valley, while the variation between lakes appears to result from their respective physico-chemical composition and their different ages. This work gives new insight into the forces behind episodic and interannual changes in microbial communities.
|
15 |
La glace de mer arctique : source ou puits d'oxyde nitreux?Randall, Kevin 16 April 2018 (has links)
L’oxyde nitreux (N2O) est un gaz à effet de serre dont la présence dans la stratosphère contribue aussi à la destruction de l’ozone. Le but de cette étude, était de déterminer la présence de N2O dans la glace de mer de l’océan Arctique et d’évaluer l’impact de cette source potentielle sur l’atmosphère. Les concentrations totales de N2O dans les derniers 10 cm de la glace de mer et dans l’eau de surface sous-jacente au couvert de glace ont été quantifiées dans la mer de Beaufort de mars à avril 2008. Nos mesures ont mis en évidence des concentrations totales en N2O faibles et constamment sous-saturées par rapport à l’eau de surface sous-jacente au couvert de glace (ca. 40%) et à l’atmosphère (ca. 30%). Nous expliquons cette sous saturation par un rejet de la saumure riche en N2O lors de la formation de la glace à l’automne et à l’hiver. La glace de mer pourrait donc représenter une source de N2O pour l’atmosphère arctique pendant ces périodes. / Nitrous oxide (N2O) is a greenhouse gas which also plays a role in stratospheric ozone depletion. The objective of this study was to demonstrate the presence of N2O in Arctic sea ice, and to quantify the impact of this potential source to the atmosphere. Bulk concentrations of N2O in the bottom 10 cm of the sea ice and in the underlying surface waters were measured in the Beaufort Sea from March to April 2008. Our sea ice measurements revealed low N2O bulk concentrations with N2O being consistently undersaturated with respect to the underlying surface water (ca. 40% saturation) and the atmosphere (ca. 30% saturation). The most plausible mechanism to explain the low N2O sea ice concentrations is a loss of N2O via brine rejection during sea ice formation in autumn and winter. Sea ice could thus act as a source of N2O via brine rejection during sea ice formation in autumn and winter.
|
16 |
Distribution et dynamique du sulfure de diméthyle (DMS) associées à la banquise dans l'Arctique canadien pendant la période de fonteGourdal, Margaux 26 April 2024 (has links)
La glace de mer saisonnière représente un environnement dynamique et biologiquement productif des régions polaires. La forte activité microbiologique associée à la glace de mer se traduit par une production de sulfure de diméthyle (DMS) souvent exceptionnelle. Le DMS est un gaz biogène soufré impliqué dans la régulation du climat via l’impact refroidissant de ses produits d’oxydation dans l’atmosphère. Cette thèse a pour objets d’étude la répartition et la dynamique du DMS dans la zone de banquise de première année en Arctique pendant la période de fonte printanière. L’ensemble des travaux de recherche présentés ici met en évidence l’ubiquité du DMS dans cet écosystème au coeur duquel la glace de première année exerce un rôle prépondérant. Mes résultats montrent que la communauté microbienne à la base de la banquise est à l’origine de concentrations de DMS parmi les plus élevées rapportées à ce jour dans les océans polaires. Ce réservoir de DMS dans la glace basale participe à l’enrichissement direct de l’océan sous la banquise, mais aussi potentiellement à un flux de DMS vers l’atmosphère. Suivant le déclin des algues de glace à la fin du printemps, les floraisons de phytoplancton sous la glace peuvent aussi être à l’origine d’une augmentation des concentrations océaniques de DMS. Mes résultats montrent que les mares de fonte qui se forment à la surface de la banquise représentent également des sources importantes de DMS pour l’atmosphère arctique. Les concentrations de DMS mesurées dans ces mares de fonte s’élevaient jusqu’à 12 nmol l-1, soit 4 fois la moyenne globale de l’océan de surface. Mes recherches indiquent que le potentiel de production du DMS par ces mares de fonte repose sur leur salinisation et leur ensemencement en algues via les canaux de saumures de la glace sous-jacente. Dans l’ensemble, les mesures effectuées au cours de cette thèse contribuent à mettre en évidence la diversité et l’importance des sources de DMS associées à la glace de première année au printemps en Arctique. Il est primordial d’inclure l’ensemble de ces flux de DMS de la banquise saisonnière dans les modèles climatiques régionaux et globaux. Enfin, mes résultats suggèrent que le remplacement graduel de la glace pluriannuelle par de la glace saisonnière résultera en une augmentation des émissions de DMS depuis la zone de glace saisonnière. / Seasonal sea ice represents a dynamic and episodically productive environment in the Polar Regions. This high biological productivity translates into the accumulation of exceptionally high concentrations of dimethyl sulfide (DMS). DMS is a biogenic sulfur-containing gas involved in the regional climate regulation through its influence on aerosols and clouds formation. This thesis focuses on DMS distribution and dynamics within the Arctic seasonal sea ice during the melt period. Together, my results highlight the ubiquity of DMS within the ice-associated ecosystem, and the determinant role played by sea ice in the DMS cycle in ice-covered regions. DMS concentrations reported in bottom sea ice are amongst the highest ever observed in polar oceans and throughout the marine environment. This pool of bottom ice-DMS enriches the under-ice ocean and potentially acts as a source of atmospheric DMS as it diffuses upward through interior sea ice. Following the decay of the sea ice algal bloom, phytoplankton growth under the ice may lead to a second increase of pelagic DMS concentrations. My results show that melt ponds that form atop sea ice following snow melt are also sources of DMS for the arctic atmosphere. Melt ponds were observed to accumulate DMS concentrations up to 12 nmol l-1, hence four-fold the global ocean surface average DMS concentration. Results from incubations experiments conducted during my thesis indicate that DMS production in melt ponds is initiated upon algal and salt intrusion via the underlying brine network during the melt season. Together, my results contribute to highlighting the importance and diversity of iceassociated DMS sources within the Arctic Ocean. DMS fluxes from seasonally ice-covered ocean should be accounted for in future global and regional models. Finally, my results suggest that gradual replacement of perennial sea ice with seasonal sea ice in the Arctic would result in an increase of DMS emission from the ice-covered ocean.
|
17 |
Concentrations en gaz dans la glace de mer: développements techniques et implications environnementalesVerbeke, Véronique 26 September 2005 (has links)
La glace de mer couvre jusqu’à 6% de la surface de notre planète. Autour du continent Antarctique, sa superficie varie entre 3.8 et 19 millions de km² (en février et septembre respectivement). Cette superficie présente des variations interannuelles. En parallèle, une évolution de la superficie de la glace de mer a également pour origine le réchauffement climatique global, très médiatisé à l’heure actuelle. Dans ce contexte, et étant donné le rôle que joue la banquise au sein de l’Océan Austral, des études de l’évolution de la glace de mer sont devenues fondamentales. <p>Ce travail a pour objectif d’étudier les relations complexes qui existent entre les processus chimiques, physiques et biologiques qui se déroulent au sein de la glace de mer. La détermination des propriétés physiques et de la composition chimique des glaces de mer correspond en effet à un pré-requis indispensable à l’étude des cycles géochimiques qui existent dans la banquise.<p>Différentes glaces de mer, naturelles ou artificielles, ont été analysées. Pour ce faire, les caractéristiques spécifiques à ce type de glace font que des méthodes d’analyse de la composition en gaz particulières ont été nécessaires.<p>Nous avons ainsi pu montrer que le contenu et la composition en gaz des différentes glaces analysées dépendent de facteurs physico-chimiques et de facteurs biologiques. L’impact des facteurs physico-chimiques se marque lors de l’incorporation initiale des impuretés dans la glace de mer et via une diffusion "post-génétique" tant que la glace est plus chaude que –5°C. En outre, les organismes photosynthétiques sont à l’origine d’une production d’oxygène et d’une consommation de dioxyde de carbone. La composition en gaz résultante peut donc être sensiblement différente de la composition atmosphérique ou de celle des gaz dissous dans l’eau de mer sous-jacente, en été comme en hiver. Il s’agit par conséquent de sérieusement envisager l’impact potentiel de la glace de mer et des microorganismes qu’elle contient, lors du réchauffement et de la débâcle, sur les échanges entre atmosphère et océan comme sur leurs compositions respectives.<p> / Doctorat en sciences, Spécialisation géographie / info:eu-repo/semantics/nonPublished
|
18 |
Vers un nouveau cadre de modélisation rhéologique de la banquiseGirard, Lucas 24 September 2010 (has links) (PDF)
Fine couche de glace flottant à la surface des océans polaires, la banquise est un objet dynamique qui joue un rôle clé dans le système climatique. Isolant l'océan de l'atmosphère, la banquise contrôle par l'intermédiaire de l'épaisseur de glace et de la fraction d'eau libre les flux d'énergie entre ces deux milieux, et ce de manière fortement non linéaire : dans une banquise dont 0.5% de la surface est constituée de fractures, 50% des flux de chaleur s'effectuent le long de ces fractures. Il apparait donc essentiel de mieux comprendre et modéliser les processus de déformation et de rupture de la banquise. Dans la première partie de ce travail, le cadre de modélisation mécanique actuellement utilisé dans les modèles de banquise, la rhéologie Visqueuse-Plastique (VP), est évalué sur la base des propriétés statistiques et propriétés d'échelle des vitesses de dérive et de déformation de la banquise. Ces propriétés jouent un rôle important pour les flux de chaleur air-mer et la production de glace, d'autre part elles peuvent être considérées comme une empreinte du comportement mécanique de la banquise. Cette évaluation met en évidence les limitations du cadre de modélisation VP et notamment son incapacité à reproduire les propriétés de déformation de la banquise. Cela suggère que la rhéologie VP n'est pas adaptée à la modélisation de la banquise. Le nouveau cadre de modélisation mécanique developpé au cours de cette thèse fait l'hypothèse que la déformation de la banquise est principalement accommodée par fracturation et glissement le long de failles (comportement fragile) sur une vaste gamme d'échelles (transmission de contraintes à grande distance). Dans ce nouveau modèle, baptisé la rhéologie Elasto-Fragile (EB), la banquise est considérée comme une plaque solide élastique, permettant les interactions à grande distance, associée à une loi d'endommagement progressive, décrivant un comportement fragile. Le modèle EB est premièrement utilisé pour mener une étude fondamentale sur la rupture dans les matériaux hétérogènes. Une divergence de la longueur de corrélation est mise en évidence à partir des fonctions de corrélation des évènements d'endommagement ainsi que par l'analyse d'échelle du champ de déformation. Les propriétés d'échelles du champ de déformation qui émergent à l'approche de la rupture sont proche de celles observées pour la déformation fragile des objets géophysiques tel que la banquise ou la croûte terrestre. Ces résultats soutiennent l'analogie entre rupture et point critique. Une application idéalisée de la rhéologie EB à la banquise Arctique, adaptée à des simulations courtes (3 jours), est présentée. Les propriétés statistiques et propriétés d'échelle obtenues pour la déformation simulée sont comparables à celles obtenues pour la banquise. Ces premiers résultats prometteurs soutiennent que les propriétés de déformation de la banquise émergent du comportement mécanique élasto-fragile de la banquise et motivent l'implémentation de la rhéologie EB dans les modèles globaux de banquise. Sur des périodes de temps plus longues, l'effet du regel des failles et fractures présentent au sein de la banquise doit être pris en compte. Une loi de cicatrisation décrivant ce processus est présentée ainsi que des résultats préliminaires de simulations prenant en compte cet aspect. Finalement, une méthodologie pour l'implémentation de la rhéologie EB dans un modèle global de banquise est présentée.
|
19 |
Simulations climatiques régionales couplées atmosphère - océan - glace de mer en Antarctique.Jourdain, Nicolas 03 December 2007 (has links) (PDF)
Dans le cadre du réchauffement climatique, la prédiction de la hausse du niveau des mers est un défit majeur. La contribution du bilan de masse de surface de l'Antarctique constituerait la seule contribution négative à la hausse du niveau des mers. D'un autre côté, la dynamique de la calotte pourrait réagir de façon non linéaire au changement climatique, et entrainer une accélération et un amincissement de certains glaciers (Meehl et al. 2007). Pour ces deux raisons, il convient de connaître précisément le climat de l'Antarctique. Les Modèles de climat globaux reproduisent mal certain aspects du climat Antarctique : les précipitations sont surestimées à cause de la topographie côtière trop lisse ; le bilan d'énergie en surface est mal représenté car les processus physiques impliquant la neige sont représentés de façon trop grossière. C'est pourquoi nous nous intéressons à la modélisation régionale, qui offre une meilleure résolution et une meilleure représentation des processus physiques.<br /><br />Le climat de l'Antarctique implique la glace de mer, dont l'extension modifie par exemple l'humidité diponible pour l'atmosphère. Mais l'ensemble de l'océan joue également un rôle, car la formation d'eau dense près des côtes engendre des échanges relativement rapides entre la surface et l'océan profond. C'est pourquoi nous avons choisi de créer un modèle régional couplé atmosphère - glace de mer - océan. Le but de cette thèse est uniquement de développer et d'évaluer un tel modèle.<br /><br />Pour l'atmosphère, nous utilisons le Modèle Atmosphérique Régional (MAR, Gallee et al. 2005). Ce modèle a été spécialement développé pour les régions polaires. Il se distingue des autres modèles climatiques régionaux par sa représentation élaborée de la neige, et par une représentation interactive de la neige soufflée par le vent. Pour l'océan et la glace de mer, nous utilisons NEMO (Nucleus for European Modeling of the Ocean), constitué de OPA-9 (Océan PArallélisé, Madec 2007) et de LIM-2 (Louvain Ice Model, Fichefet 1997). Le modèle d'océan utilise une paramétrisation élaborée de la diffusion turbulente le long des isopycnes et de la diffusion verticale. Le modèle de glace de mer utilise un modèle thermodynamique à trois couches, des équations dynamiques basées sur la rhéologie visco-plastique. Enfin, MAR et NEMO sont couplés grâce au logiciel OASIS-3 (Valcke et al. 2003). Le modèle résultant est appelé TANGO, pour Triade Atmosphère-Neige, Glace de mer, Océan.<br /><br />Avant d'analyser des simulations de TANGO, il convient de connaître précisément le comportement de chacun des modèles lorsqu'ils sont forcés par des données. Dans un premier temps, nous testons la sensibilité de MAR à la représentation de la rugosité orographique. En simulant un cas de la littérature, nous montrons que MAR est capable de simuler des cyclones de méso-échelle ; nous montrons ensuite que le rôle des vents catabatiques côtiers dans la cyclogenèse est faible devant le rôle de l'écoulement synoptique, contrairement à ce que conjecturaient les travaux précédents. Comme les vents catabatiques côtiers dépendent fortement de la rugosité orographique des Montagnes Transantarctiques, les polynies de TANGO pourraient en dépendre ; c'est pourquoi nous avons réglé ce paramètre de façon à avoir des vents côtiers en accord avec les relevés des stations météorologiques. Enfin, nous montrons que la fraction de glace de mer a peu d'influence sur la circulation atmosphérique, probablement parce que notre méthode ne modifie pas la position des fronts de glace.<br /><br />Estimer l'apport du couplage s'avère compliqué, car une partie du comportement de TANGO vient effectivement des rétroactions physiques permises par le couplage, mais une autre partie vient du changement de "forçages". En effet, MAR voit habituellement la glace de mer se SSM/I, et NEMO voit habituellement des champs atmosphériques issus des réanalyses ERA-40 ; dans TANGO, MAR voit donc les défauts de NEMO, et inversement. Pour évaluer la capacité de TANGO à représenter des rétroactions physiques, nous avons donc réalisé un jeu de simulations dans lequel MAR est forcé par les champs de surface de NEMO, et NEMO est forcé par les champs de surface de MAR. Les comparaisons entre ces simulations et les simulations couplées montrent que la couverture de glace de mer de TANGO diffère de celle de NEMO forcé par MAR, ce qui prouve que des rétroactions sont représentées. Dans le détail, nous identifions également une rétroaction impliquant la glace produite dans une polynie à l'automne, et une rétroaction impliquant les précipitations et la température de surface de l'océan.<br /><br />Finalement, l'ensemble des évaluations de MAR sur l'océan ont permis des améliorations très récentes de MAR : H. Gallée a ainsi amélioré la prise en compte des nuages aux frontières, et les flocons de neige ont été introduits dans le schéma radiatif de façon à mieux simuler les températures de la couche limite sur la calotte. Ceci améliore également le comportement de TANGO. Cette étude souligne également l'importance du couplage, puisque la solution couplée diffère de la solution forcée, toutes paramétrisations étant égales. Nous concluons donc qu'il est nécessaire de poursuivre l'utilisation de TANGO.<br /><br />Ces travaux ouvrent d'abord des perspectives à court terme, puisqu'il faudra analyser le détail des rétroactions mises en \oe uvre de façon à tenter de mieux comprendre le climat de l'Antarctique. Ensuite, TANGO pourra être utilisé à petite échelle et haute résolution pour l'analyse des polynies et des formations des masses d'eau dense impliquées dans les circulations océaniques profondes. Une autre possibilité sera d'utiliser TANGO à l'échelle de la calotte, de façon à travailler sur la régionalisation du changement climatique en Antarctique. Enfin, à plus long terme, il sera nécessaire de travailler sur le représentation des cavités sous les plate-formes glaciaires dans TANGO.
|
20 |
Prévisibilité saisonnière de la glace de mer de l'océan ArctiqueChevallier, Matthieu, Chevallier, Matthieu 07 December 2012 (has links) (PDF)
La glace de mer Arctique connaît actuellement de profondes mutations dans sa structure et sa variabilité. Le déclin récent de la couverture estivale de glace de mer Arctique, qui a atteint un nouveau record en septembre 2012, a relancé l'intérêt stratégique de cette région longtemps oubliée. La prévision de glace de mer à l'échelle saisonnière est ainsi un problème d'océanographie opérationnelle qui pourrait intéresser nombre d'acteurs économiques (pêche, énergie, recherche, tourisme). De plus, en tant que conditions aux limites pour l'atmosphère, la glace de mer peut induire une prévisibilité de l'atmosphère à l'échelle saisonnière, au même titre que les anomalies de température de surface de l'océan sous les tropiques. Nous présentons dans cette thèse la construction d'un système de prévisions saisonnières dédié à la glace de mer Arctique avec le modèle couplé CNRM-CM5.1, développé conjointement par le CNRM-GAME et le CERFACS. Nous passons en revue la stratégie d'initialisation, la réalisation et l'évaluation des hindcasts (ou rétro-prévisions). La communauté dispose d'observations de concentration de glace de mer, mais de très peu de données d'épaisseur à l'échelle du bassin. Afin d'initialiser la glace de mer et l'océan dynamiquement et thermodynamiquement, nous avons choisi d'utiliser la composante océan-glace de mer de CNRM-CM5.1, NEMO-GELATO. L'initialisation consiste à forcer NEMO-GELATO avec les champs météorologiques issus de la réanalyse ERA-Interim, sur la période 1990-2010. Des corrections appliquées aux forçages basées sur des observations satellitaires et in-situ nous permettent d'obtenir une bonne simulation de l'océan et de la glace de mer en terme d'état moyen et de variabilité interannuelle. L'épaisseur reste néanmoins sous-estimée. Quelques propriétés de prévisibilité intrinsèque de la glace de mer Arctique sont ensuite présentées. Une étude de prévisibilité potentielle diagnostique nous a permis de distinguer deux modes de prévisibilité de la glace de mer à l'aide du volume et de la structure sous-maille d'épaisseur. Un " mode de persistance " concerne la prévisibilité de la couverture d'hiver. La surface de glace de mars est potentiellement prévisible à 3 mois à l'avance par la seule persistance, et dans une moindre mesure à l'aide des surfaces couvertes par la glace relativement fine. Un " mode de mémoire " concerne la prévisibilité de la couverture estivale. La surface de glace de septembre est potentiellement prévisible jusqu'à 6 mois à l'avance à l'aide du volume et surtout de la surface couverte par la glace relativement épaisse. Ces résultats suggèrent donc qu'une bonne initialisation du volume et de la structure d'épaisseur en fin d'hiver permettrait une bonne prévisibilité des étendues de fin d'été. Les prévisions d'été et d'hiver présentent des scores particulièrement encourageants, que ce soit en anomalies brutes ou en anomalies par rapport à la tendance linéaire. Cela suggère une prévisibilité liée à l'état initial et non aux forçages externes imposés. L'analyse des prévisions d'été montre que le volume et les structures d'épaisseur de l'état initial expliquent l'essentiel des différentes prévisions, ce qui confirme l'existence du " mode de mémoire " malgré un fort biais radiatif. L'analyse des prévisions d'hiver suggère que l'étendue initiale explique une partie des différentes prévisions, un indice du " mode de persistance " des prévisions hivernales. Une analyse régionale des prévisions d'hiver permet de préciser le rôle de l'océan dans ces prévisions, et montre dans quelle mesure nos prévisions pourraient être utilisées de manière opérationnelle, notamment en mer de Barents
|
Page generated in 0.0665 seconds