• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spatio-Temporal Vegetation Change as related to terrain factors at two Glacier Forefronts, Glacier National Park, Montana

Lambert, Callie Brooke 01 February 2019 (has links)
Glacier retreat is considered a clear sign of global climate change. Although a rich body of work has documented glacial response to climate warming trends, comparatively little research has assessed vegetation change in recently deglaciated areas. In this study, we assess vegetation change at two glacier forefronts in Glacier National Park, Montana, through remote sensing analysis, fieldwork validation, and statistical modelling. The research objectives were to: 1) quantify the spatial and temporal patterns of landcover change of five classes"ice, rock, tree, shrub, and herbaceous at the two glacier forefronts in Glacier National Park, and 2) determine the role of selected biophysical terrain factors (elevation, slope, aspect, solar radiation, flow accumulation, TWI, and geology) on vegetation change at the deglaciated areas. Landsat imagery of the study locations in 1991, 2003, and 2015 were classified and validated using ground truth points and visual interpretation for accuracy. Overall accuracies were above 75% for all classified images. To identify biophysical correlates of change, we used generalized linear mixed models with non-vegetated surfaces to vegetation (code=1) or stable non-vegetation class (code=0) as a binary response variable. Results revealed elevation, slope, TWI, geology, and aspect to be associated with increased vegetation over time at Jackson Glacier forefront, whereas elevation, slope, solar radiation, and geology were significant at Grinnell Glacier forefront. New case studies on vegetation change in recently deglaciated regions can deepen our knowledge about how glacier retreat at local scales results in recharged ecosystem dynamics. / Master of Science / Glacier retreat is considered a clear sign of global climate change. Although glaciers are retreating globally, comparatively little research has assessed how vegetation changes in recently deglaciated areas. The research objectives were to: 1) quantify patterns of landcover change of five classes—ice, rock, tree, shrub, and herbaceous at two glacier forefronts in Glacier National Park, and 2) determine the environmental and terrain factors that affect vegetation change at the deglaciated areas. Landsat imagery of the study locations in 1991, 2003, and 2015 were classified and validated using ground truth points and visual interpretation for accuracy. To identify terrain and environmental factors that influence change, we modeled change from nonvegetated surfaces to vegetation (code=1) and the stable non-vegetation class (code=0). Results revealed elevation, slope, topographic moisture, geology, and aspect to be associated with increased vegetation over time at Jackson Glacier forefront. Elevation, slope, solar radiation, and geology were significant at Grinnell Glacier forefront, indicating some geographic differences in important factors. New case studies on vegetation change in recently deglaciated regions can deepen our knowledge about how glacier retreat at local scales results in recharged ecosystem dynamics. This study provides further insight on the future of alpine ecosystems as they respond to global climate change and a compelling new perspective on the future of the Park. Additionally, we demonstrate the benefits of using remote sensing applications to study land cover change as a proxy for vegetation colonization, especially in remote mountainous environments.
12

A phytosociological study of Glacier National Park, Montana, U.S.A., with notes on the syntaxonomy of alpine vegetation in Western North America

Damm, Christian. Unknown Date (has links)
Universiẗat, Diss., 2001--Göttingen. / Dateiformat: zip, Dateien im PDF-Format.
13

Clark's Nutcracker Seed Harvest Patterns in Glacier National Park and a Novel Method for Monitoring Whitebark Pine Cones

Maier, Monika E. 01 May 2012 (has links)
Clark's Nutcracker (Nucifraga columbiana) is the primary seed disperser of whitebark pine (Pinus albicaulis), which is in decline throughout its range. There is concern that a decline in whitebark pine will lead to a subsequent decline in local populations of Clark's Nutcracker. Because natural regeneration depends on the presence of Clark's Nutcracker, the process of harvesting whitebark pine seeds needs to be fully understood. In addition, resource managers need a cost-effective method for monitoring nutcracker occurrence in whitebark pine stands during the seed harvest season. I visited eleven study sites in Glacier National Park, Montana, where I searched for Clark's Nutcracker and surveyed whitebark pine cones for seed harvesting scars, the presence of which indicated that nutcrackers harvested seeds. I documented cone use patterns of Clark's Nutcracker and the major cone predator, red squirrel (Tamiasciurus hudsonicus), at five sites. To identify factors that influence cone use, I ran a correlation analysis with nutcracker and red squirrel seed harvesting variables with physical, compositional, and whitebark pine-related factors. I found that nutcrackers harvested seed at every site that had cones available. Nutcrackers harvested seed from a greater proportion of whitebark pine cones in stands where they started intensively harvesting seeds earlier. Nutcrackers began intensively harvesting seeds earlier in stands with higher relative dominance of whitebark pine. Red squirrels depleted the cone source more rapidly in stands with greater whitebark pine mortality, and at one site depleted the cone source completely before nutcrackers began intensively harvesting seeds from that site. The results of this study suggest that Clark's Nutcracker will continue to harvest seeds even as whitebark pine declines, but the decline in whitebark pine may lead to decreased seed dispersal due to greater pre-dispersal cone predation by red squirrels. Finally, I evaluated direct and indirect monitoring methods to identify a cost-effective method to accurately monitor Clark's Nutcracker occurrence in whitebark pine stands during the seed harvest season. I found that surveying scars made by seed-harvesting nutcrackers on whitebark pine cones was the most accurate and economical method of monitoring Clark's Nutcracker occurrence in an area with a low population of Clark's Nutcracker.
14

Land Use and Land Cover Change in the Crown of the Continent Ecosystem, Montana, USA from 1992-2011

Michaels, Amanda Paige 24 August 2016 (has links)
In recent decades land use and land cover change (LULCC) has occurred throughout the Intermountain West. The Crown of the Continent Ecosystem (CCE) extends along the Rocky Mountains adjacent to the Canada-U.S. International border. In the U.S. portion of the CCE, located in northwestern Montana, development has increased since the 1990s, largely because of urban to rural migration. The CCE has become an amenity-based destination, which in turn is likely to threaten its terrestrial and aquatic ecological diversity (Quinn and Broberg 2007). Specifically, development pressures on private lands surrounding federally protected lands, are intensifying and thus threatening core habitat of native species and connectivity of forested areas. By characterizing the spatial and temporal patterns of LULCC, we can better understand landscape-scale changes influenced by human-environment interactions. Using National Land Cover Database (NLCD) products, I identified areas that have experienced land cover change for three time periods: 1992-2001, 2001-2006, and 2006-2011. Additionally, I used case studies to further investigate LULCC in the study area. The findings suggest that the highest rates of development in proximity to Glacier National Park were dependent on existing urban land cover, meaning existing roadway infrastructure and established urban areas saw the greatest urban development. Additionally, communities adjacent to Glacier National Park were hotspots for urban development. Based on the results, areas in proximity to federally protected lands are likely to experience continued urban intensification over the next few decades. / Master of Science
15

A Phytosociological Study of Glacier National Park, Montana, U.S.A., with Notes on the Syntaxonomy of Alpine Vegetation in Western North America / Pflanzensoziologische Untersuchungen im Glacier Nationalpark, Montana, USA mit Ergänzungen zur Klassifikation alpiner Vegetation im westlichen Nord-Amerika

Damm, Christian 03 May 2001 (has links)
No description available.
16

Glaciers in Flux: Interpreting the Mission and Purpose of Glacier National Park in a Warming Climate

Maureen J Wieland (8947592) 16 June 2020 (has links)
<p>This dissertation used a qualitative and interpretive lens to explore visitor and staff perceptions of the mission and purpose of Glacier National Park and the National Park Service as well as the interpreted environmental state of this park. Through the use of online survey data and participant observations, this study provides a deeper understanding of how individuals inside of Glacier National Park view the potential for this park to succeed or fail with its mission as well as how environmental concerns are communicated to those within the park during the summer of 2019. Strategic environmental communication strategies are provided at the conclusion of this study in order to aid Glacier and the National Park Service in more efficiently educating their publics about their core goals and environmental management efforts.</p>
17

Symphonic Poem (for Orchestra)

Guarino, Thomas 27 May 2015 (has links)
No description available.
18

THE IMPACT OF MELTING GLACIERS ON MOUNTAIN GROUNDWATER SYSTEMS: A MULTI-YEAR STUDY INCORPORATING ISOTOPIC TRACERS AND MICROBIOLOGY IN MOUNT HOOD NATIONAL FOREST, OREGON, AND GLACIER NATIONAL PARK, MONTANA, AND TIME SERIES ANALYSES IN THE SWISS ALPS

Jordyn B Miller (11852195) 17 December 2021 (has links)
<p>Alpine glaciers around the world are in retreat and are unlikely to reverse course. This dissertation focuses on improving our understanding of the impact of glacial melt on mountainous alpine groundwater systems. Studies on glacial melt-groundwater interactions have become more prevalent, particularly in the past 5 years, because we are recognizing that the contribution of glacial melt to the hydrologic cycle is not limited to melt-season surficial streamflow. The importance of glacial melt to mountain groundwater systems has the potential to not only influence spring and streamflow generation, but also the longevity of alpine specific, and frequently endangered species, dependent on this source of recharge. This recharge may be vital for human water needs such as potable water, agriculture, and hydrothermal power.</p>The impact that a transition from glacial melt to snow- or rain-dominated streamflow and recharge will have on alpine ecosystems in a continually warming climate is far reaching. This dissertation: 1) tests whether glacial melt is an important source of recharge for mountain springs and their microbial communities, 2) investigates the spatial impact of glacial-melt recharge on residence times and flowpaths that support alpine springs, and 3) explores the impact of post-peak water on alpine baseflow using a statistical, timeseries approach. My results show that the groundwater systems in glaciated mountainous, alpine regions are particularly vulnerable to climate change. Springs in Mount Hood National Forest and Glacier National Park were sampled over a 4-year period, and in addition, publicly available long-term streamflow datasets were are also utilized. The chapters composing this work build upon each other, and compare and contrast the factors most important in glacial melt recharging the mountain-block. Information that is vital to the management of alpine water resources by landowners, watershed groups, scientists, and others interested in mountain groundwater systems in glaciated alpine regions is presented in the following pages.

Page generated in 0.0765 seconds