• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 54
  • 52
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 553
  • 553
  • 520
  • 151
  • 125
  • 88
  • 59
  • 48
  • 47
  • 43
  • 39
  • 37
  • 36
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Avaliação de desempenho de receptores de GPS em modo estático e cinemático / Performance evaluation of GPS receivers under static and cinematic conditions

Machado, Thiago Martins 24 October 2008 (has links)
São inúmeras as atividades que fazem uso do sistema Global Navigation Satellite System - GNSS, sendo o Global Positioning System - GPS, desenvolvido pelos Estados Unidos, o mais utilizado. Na área de agricultura de precisão há a necessidade de posicionamento estático e cinemático com demandas de distintos níveis de acurácia e precisão para diferentes aplicações. A deficiência de informações técnicas dos fabricantes causa incertezas nos usuários, quanto à classe de receptor a ser utilizado para determinadas atividades agrícolas. Por esses motivos os objetivos deste trabalho foram: avaliar o uso de correções diferenciais através de ensaio estático, testar o uso do receptor GPS RTK como referência para avaliar o desempenho de receptores de baixo custo em condição cinemática e desenvolver uma plataforma instrumentada para avaliar os receptores de GPS sob condição cinemática representativa para operações agrícolas. No primeiro caso foram realizados ensaios com oito receptores, sobre uma torre livre de impedimentos físicos, na qual foi montada uma plataforma em formato de cruz e nos receptores foram ativadas e desativadas as correções diferenciais WAAS, EGNOS, SF1 e SF2 e também testadas as várias intensidades de filtragem disponíveis em alguns dos receptores. No ensaio cinemático utilizando um receptor GPS RTK como referência foram utilizados dois receptores de navegação, fixados sobre a cabine de um trator e foram coletados dados com diferentes freqüências. Para ensaios cinemáticos foi construída uma plataforma móvel instrumentada com um detector óptico de pulsos (encoder), um sensor foto elétrico e dois coletores de dados responsáveis por realizar o sincronismo entre os pulsos do encoder e as atualizações da sentença do GPS e armazenamento dos dados. Assim foi possível determinar as coordenadas de referência para o cálculo dos erros de precisão e acurácia do receptor GPS submetido à avaliação. Na avaliação dos receptores em ensaio estático os resultados mostraram que as correções WAAS e EGNOS não adicionam qualidade ao posicionamento na região de Piracicaba, SP. Com a ativação dessas correções os erros de precisão e de acurácia aumentaram. As correções diferencias SF1 e SF2 via satélite demonstraram ser mais acuradas que os demais sistemas ensaiados. O ensaio sob condição cinemática, com GPS RTK de referência, permitiu o cálculo de erros somente no sentido perpendicular ao percurso. A plataforma instrumentada funcionou, cumprindo as expectativas e permitindo o cálculo dos erros de precisão e acurácia, porém demonstrou problemas de robustez nos coletores de dados, necessitando de pequenas melhorias. / The activities that use the Global Navigation Satellite System - GNSS, are countless, and the Global Positioning System - GPS, developed by the United States is the most used today. In precision agriculture there is a need of static and cinematic positioning with demands of distinct levels of accuracy and precision for different applications. Technical information deficiencies from the manufacturers causes uncertainties to the users, as the receiver class to be used for certain agricultural activities. For these reasons the objectives of this work were: evaluate the use of differential corrections through static test, to test the use of RTK GPS as reference to evaluate the performance of low cost receivers under cinematic condition and develop an instrumented platform to evaluate GPS receivers under cinematic condition that represents agricultural operations. In the first case were realized tests with eight receivers, in the top of a tower free of physical obstacles, where it was mounted a platform with cross shape. The differential corrections WAAS, EGNOS, SF1 and SF2 were tested and also some intensities of filtering available in some of the receivers. In one of the cinematic tests, using a RTK GPS as reference, we used two navigation receivers, fixed over a tractor cabin and the data were collected with different frequencies. For the second cinematic test it was built a moving platform instrumented with a pulse optical detector (encoder), a photoelectric sensor and two data loggers, responsible for the synchronization between the encoder pulses and the GPS strings, and also log the data. With that it was possible to determine the reference coordinates to calculate the errors of precision and accuracy of the GPS receiver submitted to evaluation. The evaluation in static way showed that the corrections WAAS and EGNOS do not work in the region of Piracicaba, SP. Activating these corrections the precision and accuracy errors increased. The data collected with the satellite differential corrections SF1 and SF2 got closer to the real coordinate than the other evaluated systems. The test under cinematic condition, with the RTK GPS as reference, allowed the errors calculation only in the perpendicular direction of the course. The instrumented platform worked, accomplishing the expectation and allowing the errors calculation of precision and accuracy, however, showed problems of robustness in the data loggers, needing some improvement.
172

Avaliação de desempenho de receptores de GPS em modo estático e cinemático / Performance evaluation of GPS receivers under static and cinematic conditions

Thiago Martins Machado 24 October 2008 (has links)
São inúmeras as atividades que fazem uso do sistema Global Navigation Satellite System - GNSS, sendo o Global Positioning System - GPS, desenvolvido pelos Estados Unidos, o mais utilizado. Na área de agricultura de precisão há a necessidade de posicionamento estático e cinemático com demandas de distintos níveis de acurácia e precisão para diferentes aplicações. A deficiência de informações técnicas dos fabricantes causa incertezas nos usuários, quanto à classe de receptor a ser utilizado para determinadas atividades agrícolas. Por esses motivos os objetivos deste trabalho foram: avaliar o uso de correções diferenciais através de ensaio estático, testar o uso do receptor GPS RTK como referência para avaliar o desempenho de receptores de baixo custo em condição cinemática e desenvolver uma plataforma instrumentada para avaliar os receptores de GPS sob condição cinemática representativa para operações agrícolas. No primeiro caso foram realizados ensaios com oito receptores, sobre uma torre livre de impedimentos físicos, na qual foi montada uma plataforma em formato de cruz e nos receptores foram ativadas e desativadas as correções diferenciais WAAS, EGNOS, SF1 e SF2 e também testadas as várias intensidades de filtragem disponíveis em alguns dos receptores. No ensaio cinemático utilizando um receptor GPS RTK como referência foram utilizados dois receptores de navegação, fixados sobre a cabine de um trator e foram coletados dados com diferentes freqüências. Para ensaios cinemáticos foi construída uma plataforma móvel instrumentada com um detector óptico de pulsos (encoder), um sensor foto elétrico e dois coletores de dados responsáveis por realizar o sincronismo entre os pulsos do encoder e as atualizações da sentença do GPS e armazenamento dos dados. Assim foi possível determinar as coordenadas de referência para o cálculo dos erros de precisão e acurácia do receptor GPS submetido à avaliação. Na avaliação dos receptores em ensaio estático os resultados mostraram que as correções WAAS e EGNOS não adicionam qualidade ao posicionamento na região de Piracicaba, SP. Com a ativação dessas correções os erros de precisão e de acurácia aumentaram. As correções diferencias SF1 e SF2 via satélite demonstraram ser mais acuradas que os demais sistemas ensaiados. O ensaio sob condição cinemática, com GPS RTK de referência, permitiu o cálculo de erros somente no sentido perpendicular ao percurso. A plataforma instrumentada funcionou, cumprindo as expectativas e permitindo o cálculo dos erros de precisão e acurácia, porém demonstrou problemas de robustez nos coletores de dados, necessitando de pequenas melhorias. / The activities that use the Global Navigation Satellite System - GNSS, are countless, and the Global Positioning System - GPS, developed by the United States is the most used today. In precision agriculture there is a need of static and cinematic positioning with demands of distinct levels of accuracy and precision for different applications. Technical information deficiencies from the manufacturers causes uncertainties to the users, as the receiver class to be used for certain agricultural activities. For these reasons the objectives of this work were: evaluate the use of differential corrections through static test, to test the use of RTK GPS as reference to evaluate the performance of low cost receivers under cinematic condition and develop an instrumented platform to evaluate GPS receivers under cinematic condition that represents agricultural operations. In the first case were realized tests with eight receivers, in the top of a tower free of physical obstacles, where it was mounted a platform with cross shape. The differential corrections WAAS, EGNOS, SF1 and SF2 were tested and also some intensities of filtering available in some of the receivers. In one of the cinematic tests, using a RTK GPS as reference, we used two navigation receivers, fixed over a tractor cabin and the data were collected with different frequencies. For the second cinematic test it was built a moving platform instrumented with a pulse optical detector (encoder), a photoelectric sensor and two data loggers, responsible for the synchronization between the encoder pulses and the GPS strings, and also log the data. With that it was possible to determine the reference coordinates to calculate the errors of precision and accuracy of the GPS receiver submitted to evaluation. The evaluation in static way showed that the corrections WAAS and EGNOS do not work in the region of Piracicaba, SP. Activating these corrections the precision and accuracy errors increased. The data collected with the satellite differential corrections SF1 and SF2 got closer to the real coordinate than the other evaluated systems. The test under cinematic condition, with the RTK GPS as reference, allowed the errors calculation only in the perpendicular direction of the course. The instrumented platform worked, accomplishing the expectation and allowing the errors calculation of precision and accuracy, however, showed problems of robustness in the data loggers, needing some improvement.
173

Position determination of mobile unit based on inertial navigation system.

January 2008 (has links)
Yip, Wai Lee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 119-124). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgement --- p.iii / Table of Content --- p.iv / List of Figure --- p.vi / List of table --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Background information --- p.2 / Chapter 1.2.1 --- Overview of positioning technologies --- p.2 / Chapter 1.2.2 --- Comparison between different positioning systems --- p.7 / Chapter 1.2.3 --- Recent works related to INS --- p.9 / Chapter 1.3 --- Objective --- p.11 / Chapter 1.4 --- Organization of thesis --- p.11 / Chapter Chapter 2 --- Literature Study --- p.13 / Chapter 2.1 --- Introduction to INS --- p.13 / Chapter 2.1.1 --- Coordinate Frames --- p.13 / Chapter 2.1.2 --- Gimbaled INS --- p.16 / Chapter 2.1.3 --- Strapdown INS --- p.17 / Chapter 2.1.4 --- Conventional algorithm of strapdown INS --- p.17 / Chapter 2.2 --- Inertial sensors --- p.19 / Chapter 2.2.1 --- Gyroscope --- p.19 / Chapter 2.2.2 --- Accelerometer --- p.20 / Chapter 2.3 --- Previous works --- p.22 / Chapter 2.4 --- GF-INS --- p.23 / Chapter 2.5 --- Summary --- p.25 / Chapter Chapter 3 --- Performance of MEMS accelerometer in position determination --- p.27 / Chapter 3.1 --- Basic principle --- p.27 / Chapter 3.2 --- Numeric integration --- p.28 / Chapter 3.3 --- Experimental setup --- p.30 / Chapter 3.3.1 --- MEMS Accelerometer --- p.30 / Chapter 3.3.2 --- Microcontroller --- p.32 / Chapter 3.3.3 --- System architecture --- p.33 / Chapter 3.3.4 --- Testing platform --- p.34 / Chapter 3.4 --- Initial calibration and filtering --- p.37 / Chapter 3.4.1 --- Convert ADC reading to acceleration --- p.37 / Chapter 3.4.2 --- Identify configuration error --- p.38 / Chapter 3.4.3 --- Implement low pass filter --- p.39 / Chapter 3.5 --- Experimental results --- p.40 / Chapter 3.5.1 --- Results --- p.40 / Chapter 3.5.2 --- Discussion --- p.43 / Chapter 3.6 --- Summary --- p.45 / Chapter Chapter 4 --- Performance Improvement --- p.46 / Chapter 4.1 --- Fuzzy logic based steady state detector --- p.46 / Chapter 4.1.1 --- Principle --- p.46 / Chapter 4.1.2 --- Experimental result --- p.48 / Chapter 4.2 --- Kalman filtering --- p.50 / Chapter 4.2.1 --- Discrete Kalman filter --- p.50 / Chapter 4.2.2 --- Combine with fuzzy logic based steady state detector --- p.52 / Chapter 4.2.3 --- Experimental results --- p.54 / Chapter 4.3 --- Summary --- p.58 / Chapter Chapter 5 --- Construction of GF-INS --- p.59 / Chapter 5.1 --- Principle of GF-INS --- p.59 / Chapter 5.1.1 --- Algorithm --- p.59 / Chapter 5.1.2 --- Comparing error of GF-INS and conventional INS --- p.66 / Chapter 5.1.3 --- Simulation study --- p.67 / Chapter 5.2 --- Experimental setup --- p.73 / Chapter 5.3 --- Experimental Results --- p.75 / Chapter 5.4 --- Summary --- p.81 / Chapter Chapter 6 --- Improvement on the GF-INS --- p.82 / Chapter 6.1 --- Configuration error compensation --- p.82 / Chapter 6.1.1 --- "Identify bias, scale factor and sensing direction error" --- p.83 / Chapter 6.1.2 --- Identify position error --- p.86 / Chapter 6.1.3 --- Compensator design --- p.89 / Chapter 6.1.4 --- Simulation --- p.91 / Chapter 6.2 --- Fuzzy rule based motion state detector --- p.97 / Chapter 6.2.1 --- Relation of data in different motions --- p.97 / Chapter 6.2.2 --- Fuzzy system --- p.99 / Chapter 6.2.3 --- Membership function training with gradient descent --- p.101 / Chapter 6.3 --- Experimental results and discussion --- p.104 / Chapter 6.3.1 --- Configuration errors --- p.104 / Chapter 6.3.2 --- Compensator --- p.106 / Chapter 6.3.3 --- Fuzzy rule based motion state detector --- p.107 / Chapter 6.3.4 --- Comparing the performance of both methods --- p.110 / Chapter 6.3.5 --- Comparing GF-INS and one dimensional INS --- p.112 / Chapter 6.3.6 --- Discussion --- p.113 / Chapter 6.4 --- Summary --- p.115 / Chapter Chapter 7 --- Conclusions and Future works --- p.116 / Reference --- p.119
174

Global localization of vertical road signs using a car equipped with a stereo vision system and GPS

Cova, Miguel Jorge Pereira January 2011 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Automação). Universidade do Porto. Faculdade de Engenharia. 2011
175

Strategies for estimating atmospheric water vapour using ground-based GPS receivers in Australia

Agustan, January 2004 (has links)
The Global Positioning System (GPS) of navigation satellites was first developed for global navigation and position determination purposes. Signals from satellites are delayed by the Earths neutral atmosphere on propagating to ground-based receivers, termed the tropospheric delay. Although an unwanted term for precise positioning, the tropospheric delay may be converted to atmospheric water vapour, which is a vital parameter for weather forecasting.This research investigates the optimum GPS processing strategy to estimate atmospheric water vapour derived from ground-based GPS receivers particularly in the Australian region. For this purpose, GPS data observations from GPS permanent stations across Australia, mainly from the Australian Regional GPS Network, will be processed using scientific GPS software in post-processed mode and near real-time mode.This research shows that by applying high accuracy GPS data processing, the tropospheric delay could be estimated precisely. The quality of GPS data processing is indicated by the station coordinates repeatability since the coordinates can gauge at least a coarse assessment of the ability of the processing method to estimate the tropospheric delay.The precipitable water can be estimated from the wet component after separating the tropospheric delay into dry and wet components. High accuracy GPS data processing is dependent on the best choice of processing strategies, and the correct application of error-correction models and a priori constraints. This research finds that the GPS- PW estimation agrees with Radiosonde-PW estimation with an average of standard deviation at 2.5mm level for post-processed strategy and 2.8mm for near real-time strategy. The standard deviation of tropospheric parameter estimates is 1.1mm for post-processed strategy and 1.5mm for near real-time strategy.
176

GPS heighting : the effect of the GPS antenna phase center variation on height determination

Johnston, Gary Michael, n/a January 2000 (has links)
This thesis examines the effect on height determination of the antenna phase centre variation of GPS user segment antennae. A discussion of the various antenna types in common use is followed by an explanation of the problem at hand. In particular the effect of the antenna's environment on the phase centre variation is covered more fully, since the phase variation phenomenon itself is largely unexplained in the engineering community to date. A number of examples of the heighting errors caused by this phenomenon are presented, followed by specifically designed experiments, which quantify the effect. Finally the phase centre variation itself is modelled for a particular GPS antenna in common use by surveyors in Australia. The overall conclusion, arrived at by demonstration, is that the antenna phase centre offsets and the variation model are very important for high accuracy determinations of height.
177

Gras development, approval and implementation in Australia

Ely, William Stewart, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2006 (has links)
This Thesis covers the development of an alternative Global Navigation Satellite System (GNSS) augmentation technology that has become known as the Ground-based Regional Augmentation System (GRAS). GNSS augmentation technologies in support of aviation have largely been developed by countries with large economies such as the USA and members of the European Union. These technologies have focussed on solutions to the specific problems of the host nations, based on the demographics, political and economic factors relevant to them. Outside these countries, the role of GNSS augmentation has largely been ignored, specifically when considering wide area augmentation utilising Satellite Based Augmentation Systems (SBAS). SBAS technologies are expensive, and cannot be justified for nations like Australia with a relatively small number of aircraft, operated in a focussed geographic area. Utilising SBAS services provided by another country introduces cultural, legal and institutional issues that are not always easily addressed. GRAS was derived to provide a cost-effective wide area augmentation capability to nations that lacked the economic ability to field SBAS technologies. This work covers the evolution of the GRAS concept, the construction and testing of the GRAS test bed and its associated test avionics, as well as the development of standards needed to support GRAS as an internationally accepted aviation standard. The major outcome from this work was the confirmation that GRAS could meet the Required Navigation Performance (RNP) standards for Approaches with Vertical Guidance Level 2 (APV-II) as well as all less demanding modes of flight. Results from numerous ground and flight tests conducted under this research program have been reviewed by the International Civil Aviation Organisation (ICAO) GNSS Panel (GNSSP), and been instrumental in the development and validation of Standards and Recommended Practices (SARPs) which promulgate how ICAO standardised systems should perform. The final component of this work describes the project management and technology approval processes needed to get an internationally standardised system into operational use, and the particular problems that a small country like Australia has in progressing these tasks on the World stage.
178

GPS : Nätverks-RTK eller RTK med Fast referensstation i Vänersborgs kommun

Bjarneskär, Anneli, Eriksson, Eva January 2003 (has links)
No description available.
179

Near real-time precise orbit determination of low earth orbit satellites using an optimal GPS triple-differencing technique

Bae, Tae-Suk, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 174-186).
180

Least-squares variance component estimation : theory and GPS applications /

Amiri-Simkooei, AliReza, January 2007 (has links)
Originally presented as the author's thesis (doctoral)--Delft University of Technology. / Includes bibliographical references (p. [185]-194) and index.

Page generated in 0.1063 seconds