• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 80
  • 29
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 422
  • 71
  • 38
  • 35
  • 29
  • 29
  • 28
  • 26
  • 24
  • 24
  • 22
  • 21
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Efeitos da corticoterapia pré-natal e durante a puberdade sobre a morfofisiologia do lobo ventral da próstata de ratos senis /

Leonelli, Carina. January 2014 (has links)
Orientador: Sérgio Luiz Felisbino / Coorientador: Wellerson Rodrigo Scarano / Banca: Raquel Fantin Domeniconi / Banca: Luis Antonio Justulin Júnior / Banca: Renata Carolina Piffer / Banca: Glaura Scatamburio Alves Fernandes / Resumo: Estudos têm sugerido que o excesso de glicocorticoides (GCs) durante períodos críticos do desenvolvimento pode alterar a função reprodutiva. Apesar da função essencial da próstata no sucesso reprodutivo e de sua alta susceptibilidade ao desenvolvimento de lesões com o avançar da idade, o impacto tardio de corticoterapias precoces sobre a homeostase da glândula ainda é desconhecido. No presente estudo, investigamos os efeitos da corticoterapia prenatal (PRE), durante a instalação da puberdade (PU), e sua associação (PRE+PU=REE), sobre a morfofisiologia da próstata senescente. Ratas Wistar prenhes receberam betametasona (0.1mg/kg/dia, i.m.), ou salina, nos dias gestacionais 12, 13, 18 e 19. Os descendentes machos receberam doses de betametasona (7mg/kg/dia, gavage), ou salina, do dia pós-natal 35 ao 50 (PND35-50). Na idade senil (PND300), todos os animais foram eutanasiados, amostras de sangue foram coletadas para dosagens hormonais, e a próstata ventral (VP) foi dissecada e processada para a análise morfológica, bem como para quantificação e localização de proteínas (AR, GR, PAR-4 e PCNA). Reduzidos níveis de testosterona e insulina foram observados no grupo PRE, enquanto apenas a insulina mostrou-se reduzida no grupo PU, e nenhuma redução adicional foi observada em REE. Uma tendência de aumento no índice apoptótico e incidência de ácinos com epitélio metaplásico foi detectada dentre os grupos. A quantificação de proteínas revelou menor expressão de AR no grupo PRE, maior expressão do marcador de proliferação celular (PCNA) no grupo REE, porém, diferença significativa alguma foi observada na expressão do marcador de morte celular por apoptose (PAR-4). A análise da reação imunoistoquímica para o GR indicou uma maior expressão do receptor em células epiteliais dos grupos que receberam betametasona. Com base nos resultados, sugerimos que a corticoterapia com betametasona durante o final da ... / Abstract: Studies have suggested that glucocorticoids (GCs) excess during critical developmental time windows can alter reproductive parameters. Despite of the key function of the prostate in the reproductive success, and its high susceptibility to develop lesions in an age-dependent manner, the impact of early GCs excess on the gland homeostasis is still unknown. In the present study, we have investigated the effects of prenatal (PRE), peripubertal (PU) corticotherapy, and its combination (PRE+PU=REE), on aging prostate's morphophysiology. Pregnant Wistar rats received betamethasone (0.1mg/kg/day, i.m.), or saline, on the gestational days 12, 13, 18 and 19. Male descendents received betamethasone (7mg/kg/day, gavage), or saline, from 35th to 50th postnatal day (PND35-50). Late in life (PND300), all animals were euthanized, blood samples were taken for hormones levels estimation, and the ventral prostate (VP) was excised and processed for morphology evaluation, and for proteins (AR, GR, PAR-4 and PCNA) quantification and localization as well. Lower testosterone and insulin levels were detected in group PRE, while only insulin serum levels was reduced in group PU, and no additional decrease was seen in REE. An increasing trend in the apoptosis index and metaplastic epithelium acini incidence was observed along the treated groups. The protein quantifications showed a decreased AR expression in PRE, higher proliferation marker (PCNA) expression in REE, and no significant difference in the expression of the apoptosis marker PAR-4 was detected among the groups. The immunolocalization of GR indicated a higher receptor expression in epithelial cells of treated groups, when compared to NE. Based on these results, we suggest that the corticotherapy with betamethasone during late pregnancy can program fetal prostate, resulting in altered androgen and glucocorticoids signaling permanently. Peripubertal corticotherapy deflagrated cell ... / Doutor
92

An Ethologically Relevant Animal Model of Post-Traumatic Stress Disorder: Physiological, Pharmacological and Behavioral Sequelae in Rats Exposed to Predator Stress and Social Instability

Zoladz, Phillip R 05 November 2008 (has links)
Post-traumatic stress disorder (PTSD) is a debilitating mental illness that results from exposure to intense, life-threatening trauma. Some of the symptoms of PTSD include intrusive flashback memories, persistent anxiety, hyperarousal and cognitive impairments. The finding of reduced basal glucocorticoid levels, as well as a greater suppression of glucocorticoid levels following dexamethasone administration, has also been commonly observed in people with PTSD. Our laboratory has developed an animal model of PTSD which utilizes chronic psychosocial stress, composed of unavoidable predator exposure and daily social instability, to produce changes in rat physiology and behavior that are comparable to the symptoms observed in PTSD patients. The present set of experiments was therefore designed to 1) test the hypothesis that our animal model of PTSD would produce abnormalities in glucocorticoid levels that are comparable to those observed in people with PTSD, 2) examine the ability of antidepressant and anxiolytic agents to ameliorate the PTSD-like physiological and behavioral symptoms induced by our paradigm and 3) ascertain how long the physiological and behavioral effects of our stress regimen could be maintained. The experimental findings revealed that our animal model of PTSD produces a reduction in basal glucocorticoid levels and increased negative feedback sensitivity to the synthetic glucocorticoid, dexamethasone. In addition, chronic prophylactic administration of amitriptyline (tricyclic antidepressant) and clonidine (α2-adrenergic receptor agonist) prevented a subset of the effects of chronic stress on rat physiology and behavior, but tianeptine (antidepressant) was the only drug to block the effects of chronic stress on all physiological and behavioral measures. The final experiment indicated that only a subset of the effects of chronic stress on rat physiology and behavior could be observed 4 months following the initiation of chronic stress, suggesting that some of the effects of our animal model diminish over time. Together, these findings further validate our animal model of PTSD and may provide insight into the mechanisms underlying trauma-induced changes in brain and behavior. They also provide guidance for pharmacotherapeutic approaches in the treatment of individuals suffering from PTSD.
93

Characterization and the effects of stress on glucocorticoid receptors in the brains of chinook salmon (Oncorhynchus tshawytscha)

Knoebl, Iris 02 May 1995 (has links)
Graduation date: 1996
94

Psychological determinants of stroke outcome in mice

Craft, Tara K. S. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Full text release at OhioLINK's ETD Center delayed at author's request.
95

Exploring the Suitability of a Specifici Glucocorticoid Receptor Antagonist as a Tool in the Study of the Regulation of Rat Lung Alveolarization by Glucocorticoids

Lopez, Ana Sofia 10 January 2011 (has links)
Background: Intracellular glucocorticoid receptors (GRs) mediate the regulation of lung development, including alveolarization, by glucocorticoids (GCs). One potential approach to determining the role of GC-GR signalling in alveolar formation would be by pharmacologic blockade. Hypothesis: CP472555, a novel GR antagonist with negligible anti-PR activity, is a suitable tool for the study of GC-GR regulation of rat alveolarization. Design/Methods: CP472555 doses needed to block GR were estimated in vitro in fetal rat lung primary cultures. Postnatally, a variety of doses were administered intraperitoneally over a range of days. Results: During postnatal days (PN)0-PN10, when GC levels are low, CP472555 induced changes consistent with GR agonist activity. While GC levels increase after PN11, animals exposed to CP472555 from PN11-PN21 exhibit changes consistent with anti-GR antagonist activity. Conclusion: CP472555 causes a degree of GR blockade sufficient to permit further pharmacological investigation of the role of endogenous GC-GR signalling at the end of alveolarization.
96

Exploring the Suitability of a Specifici Glucocorticoid Receptor Antagonist as a Tool in the Study of the Regulation of Rat Lung Alveolarization by Glucocorticoids

Lopez, Ana Sofia 10 January 2011 (has links)
Background: Intracellular glucocorticoid receptors (GRs) mediate the regulation of lung development, including alveolarization, by glucocorticoids (GCs). One potential approach to determining the role of GC-GR signalling in alveolar formation would be by pharmacologic blockade. Hypothesis: CP472555, a novel GR antagonist with negligible anti-PR activity, is a suitable tool for the study of GC-GR regulation of rat alveolarization. Design/Methods: CP472555 doses needed to block GR were estimated in vitro in fetal rat lung primary cultures. Postnatally, a variety of doses were administered intraperitoneally over a range of days. Results: During postnatal days (PN)0-PN10, when GC levels are low, CP472555 induced changes consistent with GR agonist activity. While GC levels increase after PN11, animals exposed to CP472555 from PN11-PN21 exhibit changes consistent with anti-GR antagonist activity. Conclusion: CP472555 causes a degree of GR blockade sufficient to permit further pharmacological investigation of the role of endogenous GC-GR signalling at the end of alveolarization.
97

Developmental Expression, Function, and Regulation of Multidrug Resistance in the Mouse Placenta and Fetal Brain

Petropoulos, Sophie 06 March 2012 (has links)
During pregnancy, 64-96% of women take at least one prescription drug. The placenta is the primary barrier between substrates in maternal and fetal circulation. The blood-brain barrier (BBB) acts as an additional barrier for the fetal brain, which is particularly susceptible to the effects of xenobiotics. Multidrug resistance phosphoglycoprotein (P-gp; encoded by Abcb1 mRNA) and breast cancer resistance protein (Bcrp1; encoded by Abcg2 mRNA) are efflux transporters localized on placental syncytiotrophoblast and capillary endothelial cells of the BBB. Placental Abcb1/P-gp and Abcg2/Bcrp1 limit maternal-fetal transfer of endogenous and exogenous substrates. Similarly, the neuroprotective roles of Abcb1/P-gp and Abcg2/Bcrp1 in the adult BBB have been demonstrated. However, developmental changes in expression and function and regulation of Abcb1/P-gp and Abcg2/Bcrp1 in these tissues are poorly understood. This thesis investigates gestational changes in expression and function of Abcb1/P-gp and Abcg2/Bcrp1 in the placenta and fetal brain, in addition to regulation by steroids, progesterone and glucocorticoids. The effects of glucocorticoids on Abcb1/P-gp and Abcg2/Bcrp1 in the placenta and fetal brain are of importance given that 10% of pregnant women are treated with synthetic glucocorticoids during the management of threatened preterm labour. These studies demonstrate that the decrease in placental Abcb1/P-gp mediated fetal protection near term is compensated by an increase in Abcb1/P-gp and Abcg2/Bcrp1 mediated neuroprotection in the fetal brain; likely in preparation for life ex-utero. The lack of effects of progesterone and the dose-, age- and sex- dependent regulatory effects of synthetic glucocorticoid have highlighted the complexity associated with regulation of these transporters. Further, these studies are the first to report sexually dimorphic glucocorticoid effects on Abcb1/P-gp and Abcg2/Bcrp1 expression and function, with the female fetus being particularly susceptible to glucocorticoid these effects. In this regard, Abcb1/P-gp and Abcg2/Bcrp1 transport capacity may be altered when synthetic glucocorticoid is administered as a co-therapy, and as such, recipient sex should be considered during pharmacotherapy. Understanding the regulation of Abcb1/P-gp and Abcg2/Bcrp1 expression and function in the placenta and fetal brain during normal development and under pathological conditions is critical for fetal health and development, particularly when therapeutic strategies are utilized in pregnancy.
98

Developmental Expression, Function, and Regulation of Multidrug Resistance in the Mouse Placenta and Fetal Brain

Petropoulos, Sophie 06 March 2012 (has links)
During pregnancy, 64-96% of women take at least one prescription drug. The placenta is the primary barrier between substrates in maternal and fetal circulation. The blood-brain barrier (BBB) acts as an additional barrier for the fetal brain, which is particularly susceptible to the effects of xenobiotics. Multidrug resistance phosphoglycoprotein (P-gp; encoded by Abcb1 mRNA) and breast cancer resistance protein (Bcrp1; encoded by Abcg2 mRNA) are efflux transporters localized on placental syncytiotrophoblast and capillary endothelial cells of the BBB. Placental Abcb1/P-gp and Abcg2/Bcrp1 limit maternal-fetal transfer of endogenous and exogenous substrates. Similarly, the neuroprotective roles of Abcb1/P-gp and Abcg2/Bcrp1 in the adult BBB have been demonstrated. However, developmental changes in expression and function and regulation of Abcb1/P-gp and Abcg2/Bcrp1 in these tissues are poorly understood. This thesis investigates gestational changes in expression and function of Abcb1/P-gp and Abcg2/Bcrp1 in the placenta and fetal brain, in addition to regulation by steroids, progesterone and glucocorticoids. The effects of glucocorticoids on Abcb1/P-gp and Abcg2/Bcrp1 in the placenta and fetal brain are of importance given that 10% of pregnant women are treated with synthetic glucocorticoids during the management of threatened preterm labour. These studies demonstrate that the decrease in placental Abcb1/P-gp mediated fetal protection near term is compensated by an increase in Abcb1/P-gp and Abcg2/Bcrp1 mediated neuroprotection in the fetal brain; likely in preparation for life ex-utero. The lack of effects of progesterone and the dose-, age- and sex- dependent regulatory effects of synthetic glucocorticoid have highlighted the complexity associated with regulation of these transporters. Further, these studies are the first to report sexually dimorphic glucocorticoid effects on Abcb1/P-gp and Abcg2/Bcrp1 expression and function, with the female fetus being particularly susceptible to glucocorticoid these effects. In this regard, Abcb1/P-gp and Abcg2/Bcrp1 transport capacity may be altered when synthetic glucocorticoid is administered as a co-therapy, and as such, recipient sex should be considered during pharmacotherapy. Understanding the regulation of Abcb1/P-gp and Abcg2/Bcrp1 expression and function in the placenta and fetal brain during normal development and under pathological conditions is critical for fetal health and development, particularly when therapeutic strategies are utilized in pregnancy.
99

Physiological and Behavioral Mechanisms of Range Expansion in the House Sparrow (Passer domesticus)

Liebl, Andrea Lyn 01 January 2013 (has links)
Introduced species cause both considerable ecological and economic damage every year. However, not much is known about how certain species are able to establish and spread beyond the site of initial introduction, whereas others do not. Species undergoing range expansion following an introduction may prove to be a valuable resource to invasion biology, but may also be informative in light of species' responses to changing environments (i.e. global climate change). Here, I took advantage of an ongoing range expansion of an introduced vertebrate species. House sparrows (Passer domesticus) were introduced to Mombasa, Kenya in the 1950s and have subsequently expanded their range northwest-ward and now occupy most major cities in Kenya. By comparing older, established populations (i.e. those in Mombasa) with more recently colonized populations at the range edge, it might be possible to determine some of the mechanisms that underlie range expansion in some species and/or populations. In Chapter 1, the background and ideas that motivated the rest of the dissertation is summarized. In Chapter 2, I studied how exploration and glucocorticoids (a hormone released in response to stressors) changed throughout the range expansion. Exploration was greater at the range edge, which is likely to ensure greater discovery of novel resources. Glucocorticoids released in response to restraint were also highest at the range edge, which might facilitate resolution of stressors in unpredictable environments. However, chronically elevated levels of glucocorticoids are often considered maladaptive, unless an individual can appropriately cope with them. Therefore, in Chapter 3, I characterized glucocorticoid receptors (i.e. mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)) in the hippocampus, an area responsible for negative feedback of glucocorticoids as well as induction of behavioral and physiological response to stressors. I found that MR density was lower relative to GR density at the range edge compared to the site of introduction (Mombasa). I speculate this pattern is a mechanism to resolve the elevated levels of glucocorticoids at the range edge. Taken together, these results indicate that individuals at the range edge have a strong glucocorticoid response to stressors to induce a rapid, strong response to resolve stressors. Subsequently, in Chapter 4, I examined the potential mechanisms of phenotypic change among Kenyan house sparrows. Typically, following an introduction event, genetic diversity undergoes a bottleneck and is greatly reduced compared to the source population; as such, genetic evolution as the main driver of changing phenotypes throughout the range expansion is unlikely. We therefore hypothesized that epigenetic mechanisms (e.g. DNA methylation) may compensate for the expected reduced genetic diversity following an introduction. Although there was no pattern of epigenetic variation among cities (i.e. variation did not increase nor decrease further from the site of introduction), epigenetic variation increased as genetic inbreeding increased (a sign of reduced genetic diversity and bottlenecks), suggesting epigenetic modifications may compensate for reduced genetic diversity following an introduction event. Overall, patterns of phenotypic variation emerged dependent on age of the population- these patterns may prove to be important in other vertebrate range expansions as well. Surprisingly, epigenetic diversity did not correlate with phenotypic variation among populations; however, within-individual studies may reveal epigenotypes are related to certain behavioral or physiological phenotypes. In the future, studies should be designed to address how phenotypic differences arise despite relatively low genetic diversity and overall high genetic admixture among individuals. In Kenyan house sparrows, maintenance of high levels of flexibility and differential developmental influences may be important factors that lead to varying phenotypes dependent on time since colonization.
100

Redox Regulation of Chemotherapy Response in Lymphoma

Jaramillo, Melba Concepcion Corrales January 2010 (has links)
Glucocorticoids are exploited for the treatment of hematological malignancies due to their ability to cause apoptosis in lymphoid cells. Innate and acquired resistance, however, limits their efficacy in the clinic. The mechanisms contributing to resistance are poorly understood. A better understanding of the critical events during glucocorticoid-induced apoptosis are needed in order to develop novel agents that will exploit these critical targets and improve the response to glucocorticoid-based therapies. Previously, using WEHI7.2 murine thymic lymphoma cells, our laboratory demonstrated that the levels of reactive oxygen species (ROS) increase during glucocorticoid-induced apoptosis signaling. WEHI7.2 cell variants with increased catalase exhibit increased resistance to glucocorticoids, suggesting that oxidative stress plays a role in glucocorticoid-induced apoptosis and that increasing the intracellular production of ROS may be a potential strategy for sensitizing lymphoma cells to glucocorticoid treatment. The following studies demonstrate that an increase in H₂O₂ is essential for lymphoma cells to undergo apoptosis and that the ability to remove cellular H₂O₂ protects the cells from glucocorticoid-mediated cell death. The redox-cycling agent, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin, increased glucocorticoid-induced oxidative stress in WEHI7.2 cells and sensitized the cells to glucocorticoid treatment. MnTE-2-PyP⁵⁺ glutathionylated NF-κB and inhibited its activity. Collectively, these findings suggest that manipulating the redox environment with MnTE-2-PyP⁵⁺ is a promising approach for lymphoma therapy.

Page generated in 0.0494 seconds