• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The initial phase of sodium sulfite pulping of softwood : A comparison of different pulping options

Deshpande, Raghu January 2016 (has links)
Single stage and two-stage sodium sulfite cooking were carried out on either spruce, pine or pure pine heartwood chips to investigate the influence of several process parameters on the initial phase of such a cook down to about 60 % pulp yield. The cooking experiments were carried out in the laboratory with either a lab-prepared or a mill-prepared cooking acid and the temperature and time were varied. The influences of dissolved organic and inorganic components in the cooking liquor on the final pulp composition and on the extent of side reactions were investigated. Kinetic equations were developed and the activation energies for delignification and carbohydrate dissolution were calculated using the Arrhenius equation. A better understanding of the delignification mechanisms during bisulfite and acid sulfite cooking was obtained by analyzing the lignin carbohydrate complexes (LCC) present in the pulp when different cooking conditions were used. It was found that using a mill-prepared cooking acid beneficial effect with respect to side reactions, extractives removal and higher stability in pH during the cook were observed compared to a lab-prepared cooking acid. However, no significant difference in degrees of delignification or carbohydrate degradation was seen.  The cellulose yield was not affected in the initial phase of the cook however; temperature had an influence on the rates of both delignification and hemicellulose removal. It was also found that the  corresponding activation energies increased in the order:  xylan, glucomannan, lignin and cellulose. The cooking temperature could thus be used to control the cook to a given carbohydrate composition in the final pulp. Lignin condensation reactions were observed during acid sulfite cooking, especially at higher temperatures. The LCC studies indicated the existence of covalent bonds between lignin and hemicellulose components with respect to xylan and glucomannan. LCC in native wood showed the presence of phenyl glycosides, ϒ-esters and α-ethers; whereas the α-ethers  were affected during sulfite pulping. The existence of covalent bonds between lignin and wood polysaccharides might be the rate-limiting factor in sulfite pulping. / The sulfite pulping process is today practised in only a small number of pulp mills around the globe and the number of sulfite mills that use sodium as the base (cation) is less than five. However, due to the increasing interest in the wood based biorefinery concept, the benefits of sulfite pulping and especially the sodium based variety, has recently gained a lot of interest. It was therefore considered to be of high importance to further study the sodium based sulfite process to investigate if its benefits could be better utilized in the future in the production of dissolving pulps. Of specific interest was to investigate how the pulping conditions in the initial part of the cook (≥ 60 % pulp yield) should be performed in the best way. Thus, this thesis is focused on the initial phase of sodium based single stage bisulfite, acid sulfite and two-stage sulfite cooking of either 100 % spruce, 100 % pine or 100 % pine heartwood chips. The cooking experiments were carried out with either a lab prepared or a mill prepared cooking acid and the temperature and cooking time were varied. Activation energies for different wood components were investigated as well as side reactions concerning the formation of thiosulfate. LCC (Lignin carbohydrates complexes) studies were carried out to investigate the influence of different cooking conditions on lignin carbohydrate linkages.
12

Ultrastructural Aspects of Pulp Fibers as Studied by Dynamic FT-IR Spectroscopy

Åkerholm, Margaretha January 2003 (has links)
Dynamic (or 2D) FT-IR spectroscopy in combination withpolarized IR irradiation has been used in this work to studywood polymer orientation and interactions on theultrastructural level in wood fibers in the native state aswell as the effects of different pulping processes. The woodpolymer interactions were studied under both dry and humidconditions. The matrix of lignin and hemicelluloses located between thewell-ordered cellulose fibrils in the wood cell wall of sprucewas here shown to be more highly ordered than has earlier beenrevealed. It was confirmed that glucomannan is orientedparallel to the cellulose fibrils and is highly coupled to it.The lignin was also shown to have a main orientation in thestructure although this is probably not as strong as that ofglucomannan. The orientation of the lignin may derive from thefact that the polysaccharides act as templates during thelignification of the cell wall. This organization implies thatnot only the cellulose but also the lignin and thehemicelluloses have different mechanical properties in thelongitudinal and cross-fiber directions. The ability to gain molecular information on the stresstransfer in polymers with dynamic FT-IR spectroscopy made itpossible to verify experimentally earlier molecularcalculations on the stress transfer within the cellulose chain.It was also possible to show, on the molecular level, thedominant importance of the cellulose fibrils for the stresstransfer in the longitudinal direction of pulp fibers,including lignin-rich mechanical pulp fibers. The glucomannanof softwood fibers was also shown to participate in the stresstransfer in the fiber direction indicating a close associationwith the cellulose, whereas the xylan showed no dynamicresponse. Already under dry conditions, the lignin was shown tohave a more viscoelastic response than the polysaccharidesduring the loading of pulp fibers and it was thus able to moveindependently of the cellulose. The enhanced spectral resolution obtained with dynamic FT-IRspectroscopy made it possible to study the crystalstructure/chain order of cellulose in pulp fibers. Thepossibility of following changes in the relative cellulose Iallomorph composition of pulp fibers was demonstrated for somechemical pulps. Dynamic FT-IR experiments under humid conditions and ofelevated temperatures made it possible to study the softeningof the biopolymers in their native environment. This was alsodemonstrated for some different pulps, and this may be apromising tool for obtaining viscoelastic information on themolecular level in composite systems such as wood fibers. <b>Keywords:</b>cellulose, cooperation, crystallinity, dynamictest, glucomannan, hardwood, holocellulose, humidity, infraredspectroscopy, kraft pulp, lignin, mechanical pulp, orientation,polarised light, softwood, strain, sulphite pulp,viscoelasticity, xylan
13

Ultrastructural Aspects of Pulp Fibers as Studied by Dynamic FT-IR Spectroscopy

Åkerholm, Margaretha January 2003 (has links)
<p>Dynamic (or 2D) FT-IR spectroscopy in combination withpolarized IR irradiation has been used in this work to studywood polymer orientation and interactions on theultrastructural level in wood fibers in the native state aswell as the effects of different pulping processes. The woodpolymer interactions were studied under both dry and humidconditions.</p><p>The matrix of lignin and hemicelluloses located between thewell-ordered cellulose fibrils in the wood cell wall of sprucewas here shown to be more highly ordered than has earlier beenrevealed. It was confirmed that glucomannan is orientedparallel to the cellulose fibrils and is highly coupled to it.The lignin was also shown to have a main orientation in thestructure although this is probably not as strong as that ofglucomannan. The orientation of the lignin may derive from thefact that the polysaccharides act as templates during thelignification of the cell wall. This organization implies thatnot only the cellulose but also the lignin and thehemicelluloses have different mechanical properties in thelongitudinal and cross-fiber directions.</p><p>The ability to gain molecular information on the stresstransfer in polymers with dynamic FT-IR spectroscopy made itpossible to verify experimentally earlier molecularcalculations on the stress transfer within the cellulose chain.It was also possible to show, on the molecular level, thedominant importance of the cellulose fibrils for the stresstransfer in the longitudinal direction of pulp fibers,including lignin-rich mechanical pulp fibers. The glucomannanof softwood fibers was also shown to participate in the stresstransfer in the fiber direction indicating a close associationwith the cellulose, whereas the xylan showed no dynamicresponse. Already under dry conditions, the lignin was shown tohave a more viscoelastic response than the polysaccharidesduring the loading of pulp fibers and it was thus able to moveindependently of the cellulose.</p><p>The enhanced spectral resolution obtained with dynamic FT-IRspectroscopy made it possible to study the crystalstructure/chain order of cellulose in pulp fibers. Thepossibility of following changes in the relative cellulose Iallomorph composition of pulp fibers was demonstrated for somechemical pulps.</p><p>Dynamic FT-IR experiments under humid conditions and ofelevated temperatures made it possible to study the softeningof the biopolymers in their native environment. This was alsodemonstrated for some different pulps, and this may be apromising tool for obtaining viscoelastic information on themolecular level in composite systems such as wood fibers.</p><p><b>Keywords:</b>cellulose, cooperation, crystallinity, dynamictest, glucomannan, hardwood, holocellulose, humidity, infraredspectroscopy, kraft pulp, lignin, mechanical pulp, orientation,polarised light, softwood, strain, sulphite pulp,viscoelasticity, xylan</p>
14

Impact du glucomannane de konjac sur les interactions composés volatils - amidon de pomme de terre dans un gel hydraté / Impact of konjac glucomannan on interactions aroma compound - potato starch in a hydrated gel

Lafarge, Céline 08 December 2016 (has links)
L’objectif de ce travail est de démontrer que la présence de glucomannane de konjac (KGM) dans une matrice d’amidon de pomme de terre permet d’accroître sa stabilité physique sans inhiber l’encapsulation moléculaire de composés d’arôme par l’amylose. Pour cette étude, les deux polyosides choisis sont issus de tubercules de plantes abondantes dans la nature.L’amidon est connu pour interagir avec des composés volatils, soit en les piégeant dans la zone amorphe, soit en formant des complexes d'inclusion. Ce phénomène est appelé encapsulation moléculaire. Cependant, les matrices amylacées à forte teneur en eau présentent une synérèse pouvant être néfaste sur la stabilité du piégeage des composés d’arôme dans le temps. Le KGM possède une capacité à former des solutions extrêmement visqueuses. L’ajout de KGM à faible concentration (0,2 %) à une suspension d’amidon (5 %) perturbe la gélatinisation de l’amidon, accélère la rétrogradation de l’amylose et ralentit la rétrogradation de l’amylopectine. Lors d’un vieillissement accéléré, la présence de KGM assure la stabilité de la suspension d’amidon. Dans une matrice amidon – KGM, l’encapsulation moléculaire du carvacrol par l’amylose a été mise en évidence. Les complexes formés sont de type V6III. Leur formation est dépendante des conditions expérimentales. L’utilisation du propylène glycol favorise la formation de complexes amylose carvacrol. Lors d’un vieillissement accéléré, le KGM assure la stabilité du piégeage du carvacrol.La matrice amidon de pomme de terre – KGM avec un ajout du carvacrol en fin de process présente la stabilité physique du gel et la stabilité du piégeage du carvacrol les plus optimales. / The objective of this study is to demonstrate that the presence of konjac glucomannan (KGM) in a potato starch matrix enhances its physical stability without inhibiting the molecular encapsulation of aroma compounds by amylose. For that purpose, the two selected polysaccharides are from plant tubers, abundant in nature.Starch is known to interact with volatile compounds either by trapping in amorphous phase or by forming inclusion complexes. This phenomenon is called molecular encapsulation. However, at high water content, these starchy matrices exhibit syneresis that can be harmful to the stability of the aroma compounds trapping over time. KGM has the ability to form highly viscous solutions. Our results show that the addition of KGM at low concentration (0.2 %) in starch dispersion (5 %) disrupts the gelatinisation of starch, accelerates the retrogradation of amylose and delays the one of amylopectin. During accelerate aging, the presence of KGM ensures stability of starch suspensions.In starch – KGM matrix, the molecular encapsulation of carvacrol by amylose has been demonstrated. The complexes of caravacrol – amylose are V6III type structure. Their establishment is dependent on experimental conditions. The use of propylene glycol as carrier solvent of carvacrol promotes the formation of complexes between amylose and carvacrol. During accelerate aging, the presence of KGM ensures the stability of carvacrol trapping.The potato starch – KGM matrix with an addition of carvacrol at the end of the process shows the best physical stability of the gel and the best carvacrol trapping.

Page generated in 0.0261 seconds