• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MiR-16, un nouveau régulateur du transporteur de glucose dépendant de l’insuline GLUT-4

El-Amine, Nour 03 1900 (has links)
Les microARNs sont des petits ARNs non codants d'environ 22 nucléotides qui régulent négativement la traduction de l'ARN messager cible (ARNm) et ont donc des fonctions cellulaires. Le microARN-16 (miR-16) est connu pour ses effets antiprolifératifs. Nous avons observé que l’expression de miR-16 est diminuée dans les cellules endothéliales humaines sénescentes et quiescentes en comparaison à des cellules prolifératives. Une analyse informatique des sites potentiels de liaison de miR-16 prévoit que GLUT-4, un transporteur du glucose insulinodépendant, pourrait être une cible potentielle du miR-16. Nous avons donc testé l'hypothèse que miR-16 régule négativement le métabolisme du glucose cellulaire. Dans des HUVEC, l'inhibition de miR-16 endogène avec des anti-miRNA oligonucléotides (AMO) augmente les niveaux protéiques de GLUT-4 de 1,7 ± 0,4 fois (p=0,0037 ; n=9). Dans des souris nourries avec un régime alimentaire normal ou riche en graisse et en sucre, l’expression de GLUT-4 dans le muscle squelettique a tendance à corréler négativement avec les niveaux de miR-16 (p=0,0998, r2=0,3866, n=4). Ces résultats suggèrent que miR-16 est un régulateur négatif de GLUT-4 et qu’il pourrait être impliqué dans la régulation du métabolisme cellulaire du glucose. / MicroRNAs are small noncoding RNAs of approximately 22 nucleotides that negatively regulate translation of the target messenger RNA (mRNA) and therefore have cellular functions. MicroRNA-16 (miR-16) is known to display anti-proliferative effects. We observed that miR-16 was down-regulated in non-proliferative human senescent endothelial cells. Computational analysis of the potential binding sites of miR-16 predicted that GLUT-4, an insulin-dependent glucose transporter, is a potential target of miR- 16. We therefore tested the hypothesis that miR-16 down-regulates cellular glucose metabolism. In HUVEC, inhibition of using anti-miRNA oligonucleotides (AMO) endogenous miR-16 up-regulated GLUT-4 protein levels 1,7 ± 0,39 folds (p=0,0037; n=9). In mice fed a regular or high fat diet, skeletal muscle expression of GLUT-4 tended to negatively correlate with miR- 16 levels (p=0,0998, r2=0,3866, n=4). These results suggest that miR-16 is a negative regulator of GLUT-4 and may be involved in the regulation of cellular glucose metabolism.
2

MiR-16, un nouveau régulateur du transporteur de glucose dépendant de l’insuline GLUT-4

El-amine, Nour 03 1900 (has links)
Les microARNs sont des petits ARNs non codants d'environ 22 nucléotides qui régulent négativement la traduction de l'ARN messager cible (ARNm) et ont donc des fonctions cellulaires. Le microARN-16 (miR-16) est connu pour ses effets antiprolifératifs. Nous avons observé que l’expression de miR-16 est diminuée dans les cellules endothéliales humaines sénescentes et quiescentes en comparaison à des cellules prolifératives. Une analyse informatique des sites potentiels de liaison de miR-16 prévoit que GLUT-4, un transporteur du glucose insulinodépendant, pourrait être une cible potentielle du miR-16. Nous avons donc testé l'hypothèse que miR-16 régule négativement le métabolisme du glucose cellulaire. Dans des HUVEC, l'inhibition de miR-16 endogène avec des anti-miRNA oligonucléotides (AMO) augmente les niveaux protéiques de GLUT-4 de 1,7 ± 0,4 fois (p=0,0037 ; n=9). Dans des souris nourries avec un régime alimentaire normal ou riche en graisse et en sucre, l’expression de GLUT-4 dans le muscle squelettique a tendance à corréler négativement avec les niveaux de miR-16 (p=0,0998, r2=0,3866, n=4). Ces résultats suggèrent que miR-16 est un régulateur négatif de GLUT-4 et qu’il pourrait être impliqué dans la régulation du métabolisme cellulaire du glucose. / MicroRNAs are small noncoding RNAs of approximately 22 nucleotides that negatively regulate translation of the target messenger RNA (mRNA) and therefore have cellular functions. MicroRNA-16 (miR-16) is known to display anti-proliferative effects. We observed that miR-16 was down-regulated in non-proliferative human senescent endothelial cells. Computational analysis of the potential binding sites of miR-16 predicted that GLUT-4, an insulin-dependent glucose transporter, is a potential target of miR- 16. We therefore tested the hypothesis that miR-16 down-regulates cellular glucose metabolism. In HUVEC, inhibition of using anti-miRNA oligonucleotides (AMO) endogenous miR-16 up-regulated GLUT-4 protein levels 1,7 ± 0,39 folds (p=0,0037; n=9). In mice fed a regular or high fat diet, skeletal muscle expression of GLUT-4 tended to negatively correlate with miR- 16 levels (p=0,0998, r2=0,3866, n=4). These results suggest that miR-16 is a negative regulator of GLUT-4 and may be involved in the regulation of cellular glucose metabolism.
3

Muscle Glycogen Metabolism in Horses: Interactions Between Substrate Availability, Exercise Performance and Carbohydrate Administration

Lacombe, Véronique Anne 29 January 2003 (has links)
No description available.
4

The effect of consuming whey proteins, their component peptides and amino acids on glucose transporters in rat muscle = Efeito do consumo das proteínas do soro do leite, componentes peptídicos e aminoácidos nos transportadores de glicose em músculos de ratos / Efeito do consumo das proteínas do soro do leite, componentes peptídicos e aminoácidos nos transportadores de glicose em músculos de ratos

Morato, Priscila Neder 21 August 2018 (has links)
Orientador: Jaime Amaya-Farfán / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-21T17:15:26Z (GMT). No. of bitstreams: 1 Morato_PriscilaNeder_D.pdf: 813172 bytes, checksum: 96f9ce7da352faefcc39166ef5fe4fa9 (MD5) Previous issue date: 2012 / Resumo: As proteínas do soro do leite apresentam propriedades nutricionais e funcionais que influenciam a modulação de funções bioquímicas e fisiológicas.Estudos têm demonstrado que as proteínas do soro do leite (PSL), principalmente na forma hidrolisada (PSLH) possuem a capacidade de aumentar os níveis de glicogênio muscular. Considerando que a captação de glicose pela célula do músculo esquelético relaciona-se diretamente à atividade de proteínas transportadoras de glicose, este estudo se propôs realizar dois experimentos para conhecer os efeitos da PSL e da PSLH e de alguns dos seus produtos de hidrólise nos transportadores de glicose em músculos de ratos. No experimento 1, o objetivo foi verificar se o consumo de PSL e PSLH modulam a concentração de transportadores de glicose GLUT-1 e GLUT-4 na membrana plasmática (MP) de células musculares de animais sedentários e exercitados. Foram utilizados 48 ratos Wistar machos divididos em dois grupos: sedentários e exercitados, e cada um desses subdivididos em outros três, de acordo com a dieta, totalizando 6 grupos (n=8 por grupo). Os animais foram mantidos por 9 dias recebendo as dietas experimentais baseadas na AIN-93G, com as seguintes fontes protéicas: caseína (CAS), utilizada como controle, proteína do soro do leite (PSL), proteína do soro do leite hidrolisada (PSLH), e o animais exercitados foram submetidos a uma única sessão de exercício a 15m/min durante 60min um dia anterior ao sacrifício. Após o período experimental os animais foram sacrificados, os transportadores de glicose no músculo, GLUT-1 e GLUT-4, foram analisados por western blot. Adicionalmente, glicogênio, aminoácidos livres plasmáticos, insulina e indicadores bioquímicos de saúde foram determinados por métodos padrões. O consumo de PSLH elevou significativamente as concentrações de GLUT-4 na MP e de glicogênio, enquanto GLUT-1, insulina e os indicadores de saúde não apresentaram alterações. Baseado nas evidências do experimento 1, de que o consumo de PSLH eleva os estoques de glicogênio muscular e que também aumenta a concentração do transportador de glicose GLUT-4 na membrana plasmática, o experimento 2 teve como objetivo identificar quais componentes da PSLH poderiam modular a translocação do transportador de glicose GLUT-4 para a MP em músculo esquelético. Foram utilizados 49 ratos Wistar machos divididos em 7 grupos (n=7), que receberam soluções orais de glicose 30% mais 0,55 g/kg de peso corpóreo os seguintes componentes da PSLH: a) glicose (controle); b) PSLH; c) L-isoleucina; d) L-leucina; e) L-leucina mais L-isoleucina; f) peptídeo Lisoleucil- L-leucina; g) peptídeo L-leucil-L-isoleucina. Após receberem as soluções, os animais foram sacrificados, o transportador de glicose GLUT-4 no músculo foi analisado por western blot. Também foram analisados glicogênio, glicemia, insulina, aminoácidos livres plasmáticos e musculares, e indicadores bioquímicos de saúde por métodos clássicos. Entre os componentes testados da PSLH, o peptídeo leucil-isoleucina e o aminoácido isoleucina se mostraram mais eficientes em translocar GLUT-4 para a MP, favorecendo a captação de glicose pelo músculo esquelético. Os resultados obtidos nos experimentos indicam que o consumo da PSLH e de seus componentes ao aumentarem a translocação de GLUT-4 para a membrana plasmática, poderiam auxiliar no tratamento ou prevenção do diabetes do tipo II / Abstract: The milk whey proteins (WP) exhibit nutritional and functional properties which result in the modulation of the biochemical and physiological functions. Studies have shown that the WP, especially those in the hydrolyzed form (WPH),has the capacity to increase muscle glycogen levels. Considering that glucose uptake by the skeletal muscle cell is directly related to the activity of the glucose transporter proteins, the present study proposed to carry out two experiments to determine the effects of WP and WPH and of some of their hydrolysis products on the glucose transporters in rat muscles. The objective of experiment 1 was to verify if the consumption of WP and WPH are able to modulate the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of muscle cells in sedentary and exercised animals. Forty-eight male Wistar rats were used, divided into sedentary and exercised groups, each of which was sub-divided into three sub-groups according to the diet, giving a total of 6 groups (n=8 per group). The animals were maintained for 9 days on experimental diets based on AIN-93G with the following protein sources: casein (CAS) used as the control, whey protein (WP) and whey protein hydrolysate (WPH). The exercised animals were submitted to a single exercise session for 60 min at 15m/min one day prior to euthanasia. After the experimental period, the animals were euthanized, and the muscle glucose transporters GLUT-1 and GLUT-4 analyzed by western blot. In addition, glycogen, free plasma amino acids, insulin and the biochemical health indicators were analyzed by standard techniques. The consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and of glycogen, whereas GLUT-1, insulin and the health indicators remained unaltered. Based on evidence from experiment 1 that the consumption of WPH raised the muscle glycogen reserves and also the concentration of the glucose transporter GLUT-4 in the plasma membrane, the second experiment was designed to identify which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM in the skeletal muscle of the animals. Forty-nine male Wistar rats were used, divided into 7 groups (n=7), who were orally fed 30% glucose solutions plus 0.55 g/kg of body weight of the following WPH components: a) glucose (control); b) WPH; c) L-isoleucine; d) L-leucine; e) L-leucine plus L-isoleucine (50:50 mixture of both amino acids); f) L-isoleucyl-L-leucine peptide or g) L-leucyl-L-isoleucine peptide. After receiving the solutions, the animals were euthanized and the GLUT-4 determined by western blot. Glycogen, glycemia, insulin, free plasma and muscle amino acids, and the biochemical health indicators were also analyzed by classical methods. Of the WPH components tested, the peptide L-leucyl-L-isoleucine and the amino acid L-isoleucine were shown to be more efficient in translocating GLUT-4 to the PM, favoring the capture of glucose by the skeletal muscle. The results obtained from these experiments indicated that the consumption of WPH and its components increased GLUT-4 translocation to the plasma membrane, and could aid in the treatment and prevention of type ll diabetes / Doutorado / Nutrição Experimental e Aplicada à Tecnologia de Alimentos / Doutora em Alimentos e Nutrição
5

The Effects of Excess Corticosterone on LKB1 and AMPK Signaling in Skeletal Muscle of Rats

Nakken, Gary N. 04 December 2008 (has links) (PDF)
Cushing's syndrome and glucocorticoid therapy lead to central obesity, insulin resistance, and symptoms of altered energy regulation similar to those observed in the metabolic syndrome. We hypothesized that excess glucocorticoids alter energy sensing/signaling in skeletal muscle through mediation of the LKB1/AMPK signaling pathway. To test this hypothesis, three 100 mg pellets of corticosterone were implanted subcutaneously in each of nine rats for two weeks. Responses were compared with sham operated controls fed ad libitum or food restricted to produce the body weights similar to the treatment group rats. After the treatment period, animals were anesthetized and the right gastrocnemius-plantaris and soleus were removed for analysis. After tibial nerve stimulation for 5 min, the left gastrocnemius-plantaris and soleus were also removed. We assessed AMPK activity and subunit expression, as well as several metabolic indicators including ATP, creatine phosphate, creatine, glycogen, and malonyl-CoA levels in rested and stimulated gastrocnemius-plantaris and soleus muscles. We found that high levels of glucocorticoids decreased AMPKγ3 subunit expression in the gastrocnemius-plantaris. We also observed reduced AMPKα2 activity in the stimulated gastrocnemius-plantaris, but not the soleus; and that this decreased activity corresponded to a significant reduction in phosphorylated TBC1D1, a protein involved in signaling GLUT-4 translocation. Finally, in the gastrocnemius-plantaris, we also noted an increase in glycogen stores in the hypercorticosteronemic rats. Our data suggest that altered energy sensing/signaling associated with high levels of glucocorticoids may be due in part to inhibition of AMPKα2 activity and the high energy state produced by increased glycogen stores. We also conclude that high levels of glucocorticoids decrease the levels of AMPKγ3 and diminish insulin/contraction signaling through phosphorylated TBC1D1.
6

Glucose and Lipid Metabolism during Pregnancy and Lactation in Rats : Role of Undercarboxylated Osteocalcin

Pandey, Aparamita January 2016 (has links) (PDF)
Energy homeostasis is an important physiological mechanism essential for balancingenergy flow through the living systems by managing overall metabolism in the body. Thus, energy homeostasis is under a tight control by means of extremely well-regulated energy metabolism. One of the most common metabolic disorders that occur following disruption in energy homeostasis mechanisms is obesity. Obese individuals develop insulin resistance in the peripheral tissues (fat and muscle) and may also include non-alcoholic fatty liver disease. Insulin resistance is the primary factor responsible for the development of type 2 diabetes mellitus (T2D). Towards control and management of T2D condition, insulin, drugs that regulate the insulin sensitivity and drugs that regulate glucose metabolism are widely used. Repeated insulin administration is painful, expensive and requires constant glucose monitoring while other drugs have various limitations and side effects. Therefore, there is wide scope development of new anti-diabetic molecules for effective management of T2D. Studies related to energy metabolism are necessary to understand the cause of such disorders and improve existing methods to manage metabolic abnormalities. Animal models to understand such metabolic disorders have been developed by chemical treatments and genetic modifications, but diet-induced obese (DIO) animal models appear to be the better among all the models reported. DIO animal models are known to most closely mimic the physiological situation. Apart from the experimental model system studies have been conducted under physiological conditions to gain knowledge on possible mechanisms behind energy balance maintained and established during extreme situations such as pregnancy and lactation. To support fetal growth and milk synthesis several metabolic adjustments occur during pregnancy and lactation without the major disruption in the maternal energy homeostasis. In the present study, to gain knowledge on the mother’s body glucose, lipid management and insulin responses throughout the gestation and lactation periods analyses were carried out during at different stages of pregnancy and lactation in rats. It was observed that during pregnancy, the dam developed insulin resistance in peripheral tissues with decreased activation of insulin pathway and reduced glucose utilization while the liver remained unaffected. Although, as soon as the lactation began, peripheral tissue such as muscle developed increased insulin sensitivity associated with increased expression of glucose transporter gene and higher glucose metabolism. The reversal of insulin response in the muscle tissue observed during lactation appears to be a suitable model system for understanding the process by which the body undergoes a transition from insulin resistant state to sensitive state under a physiological condition. Interestingly, early lactation period is known to have much lower levels of insulin available to act upon peripheral tissues. Factors involved in this transition could be potential therapeutic agents for control of T2D, since during early stages of T2D muscle appears to be the first metabolic organ to exhibit resistance to insulin. The undercarboxylated osteocalcin (UNOC) has been reported to function as anti-diabetic molecule. UNOC is released from skeletal system during bone turnover, especially due to resorption process. Experiments were carried out to examine the role of UNOC during the transition from insulin resistant state of pregnancy to sensitive state of lactation period. It was observed that UNOC levels were lower during pregnancy, but increased during early lactation (day 3 to 6 of lactation). The increased UNOC levels seen during early lactation was higher than the levels observed in non-pregnant, non-lactating (NPNL) rats and the UNOC levels decreased following removal of pups immediately after parturition. It was noted that altering UNOC levels during early lactation altered the insulin response of the whole body and muscle transporter-4 expression (glut4) of lactating rats. A significant increase in bone turnover was also observed during lactation compared to NPNL and pregnant rats. The data suggest that increased bone turnover leads to increased UNOC levels in blood during lactation. Estrogen is known as bone protector molecule which acts via its receptors, estrogen receptor α and β (ERα and β). It was reported that ERβ is a dominant regulator of estrogen signaling when both the receptors of estrogen i.e. ERα and ERβ coexist in the target tissue and estrogen levels are relatively higher. Compared to NPNL rats estrogen levels have shown to be higher during late pregnancy and lower during early lactation. It was observed that liver and adipose tissues largely express ERα, but the muscle showed expression of both the receptors in NPNL rats indicating that muscle is the metabolic tissue that may be modulated by both the receptors. It has been reported that ERβ suppresses ERα action on glut4 transcription in the myocytes. It is possible that the altered ERs ratio modulates glut4 expression during late pregnancy and early lactation. The receptor expression ratio data indicated that muscle is an ERβ dominant during late pregnancy, while it is ERα dominant during early lactation. Further, alteration in UNOC levels during early lactation changed ERs ratio but not sufficient enough to alter the ER dominance, indicating lack of effect of UNOC on ER dominance during early lactation. Experiments were conducted to alter insulin sensitivity during early lactation to extrapolate physiological findings to a pathological condition of the DIO model by feeding rats with high-fat diet (HFD). During early lactation, HFD dams had lower insulin response, lower circulatory UNOC level and lower UNOC receptor (GPRC6A) expression in the muscle. Gene expression of muscle glut4 was lower in HFD rats and the tissue remained ERα dominant indicating no role of HFD on ERs ratio in muscle during early lactation. UNOC has been found to have negative effect on lipid accumulation. During pregnancy, lipid accumulation is one of the first events essential for proper fetal development. Since UNOC levels were suppressed during pregnancy, experiments were carried out to examine relevance of UNOC suppression on lipid accumulation during early pregnancy. For this purpose, pharmacological approaches were utilized to alter UNOC levels during early pregnancy. It was observed that the transient elevation of UNOC levels caused decrease in maternal fat depots without changing circulatory triacylglyceride (TAG) levels. In experiments that decreased UNOC levels in NPNL state to mimic lower levels of UNOC present during early pregnancy, it was found fat storage was higher and TG was found to be lowered in the circulation. These results indicate that UNOC can cause a reduction in fat accumulation and TG levels but UNOC effects on TG levels, was not observed during pregnancy. The data taken together suggest that suppression of UNOC is required for better fat deposition in the mother’s body. Although, some studies have indicated an insulin response transition occurring during pregnancy to lactation, but the factors involved in this transition have not been reported. This report discusses about the factors such as UNOC and ERs and their involvement in the transition process. UNOC role has been studied in genetically modified models and in metabolic disorders such as obesity model system and evidence for physiological role of UNOC would further support its candidature as anti-diabetic molecule. The present research work is the first report to detail relevance of UNOC in physiological conditions such as pregnancy and lactation for glucose and lipid management.

Page generated in 0.0189 seconds