• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biophysical properties of AMPA receptor complexes

Riva, Irene 11 May 2020 (has links)
Die exzitatorische Neurotransmission im gesamten Zentralnervensystem (ZNS) der Wirbeltiere wird weitgehend durch die α-Amino-3-hydroxy-5-methyl-4-isoxazolpropionsäure-Rezeptoren (AMPARs) vermittelt. AMPARs sind Glutamat-gesteuerte Ionenkanäle, die sich an der postsynaptischen Membran befinden, wo sie den Kern makromolekularer Komplexe mit einer Reihe von Hilfsproteinen bilden, die die Rezeptorfunktion konzertiert regulieren. Die bekanntesten dieser Proteine sind die transmembranen AMPA-Rezeptor-Regulierungsproteine (TARPs). TARPs zeigen eine verwirrende Reihe von Effekten auf den Handel, die synaptische Verankerung, die Gate-Kinetik und die Pharmakologie von AMPARs. Über die strukturellen Merkmale des AMPAR-TARP-Komplexes wurde zunehmendes Wissen gesammelt. Die molekularen Mechanismen, die der TARP-Modulation der AMPARs zugrunde liegen, sind jedoch noch nicht vollständig aufgeklärt. In der vorliegenden Studie wurden die AMPAR-TARP-Interaktionen mit Hilfe der Elektrophysiologie in 293 Zellen der menschlichen embryonalen Niere (HEK) untersucht. Die Rolle der extrazellulären TARP-Schleifen, Loop1 (L1) und Loop2 (L2), bei der Modulation der AMPAR-Ansteuerung wurde analysiert. Es wurde ein Modell für die TARP-Modulation vorgeschlagen, das auf vorhergesagten zustandsabhängigen Wechselwirkungen von TARP L1 und L2 mit dem AMPAR basiert. Da die nativen AMPARs im Gehirn hauptsächlich aus heterotetrameren Zusammensetzungen von vier verschiedenen Untereinheiten (GluA1-4) bestehen, wurden außerdem verschiedene Zusammensetzungen von AMPAR-Untereinheiten getestet. Es wurden sowohl gemeinsame als auch von den Untereinheiten abhängige Mechanismen der AMPAR-Modulation durch TARPs beobachtet. Zusammenfassend liefern diese Experimente den Nachweis, dass TARP L1 und L2 nicht an der Assoziation von AMPAR-TARP-Komplexen beteiligt sind und die Modulation der AMPAR-Ansteuerung durch TARPs vollständig erklären können. / Excitatory neurotransmission throughout the vertebrate central nervous system (CNS) is largely mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs are glutamate-gated ion channels located at the postsynaptic membrane, where they compose the hub of macromolecular complexes with a number of auxiliary proteins that concertedly regulate the receptor function. Among these proteins the most known ones are the transmembrane AMPA receptor regulatory proteins (TARPs). TARPs show a bewildering array of effects on the trafficking, synaptic anchoring, gating kinetics and pharmacology of AMPARs. Growing knowledge has been gathered about the structural features of the AMPAR-TARP complex. However, the molecular mechanisms underlying TARP modulation of AMPARs have not been fully revealed yet. Given that higher brain functions rely upon AMPAR activity and dysregulation of AMPARs has been associated to life-threatening CNS disorders, big efforts are being made to unravel the molecular machinery behind AMPAR regulation and to identify AMPAR auxiliary proteins as potential pharmacological targets. In the present study, AMPAR-TARP interactions were investigated using electrophysiology in human embryonic kidney (HEK) 293 cells. The role of TARP extracellular loops, Loop1 (L1) and Loop2 (L2), in the modulation of AMPAR gating was analysed. A model for TARP modulation has been proposed, based on predicted state-dependent interactions of TARP L1 and L2 with the AMPAR. Moreover, considering that native AMPARs in the brain mainly consist of heterotetrameric assemblies of four distinct subunits (GluA1-4), different AMPAR subunit compositions were tested. Common as well as subunit-dependent mechanisms of AMPAR modulation by TARPs have been observed. In summary, these experiments provided evidence that TARP L1 and L2 are not involved in association of AMPAR-TARP complexes and can entirely account for the modulation of AMPAR gating by TARPs.
2

Structural analysis of ion permeation in a non-selective channel mimicking the AMPA receptor

Minniberger, Sonja 08 December 2021 (has links)
Ionenkanäle spielen eine wichtige Rolle in vielen physiologischen Prozessen. Während manche Kanäle hochspezifisch für eine Ionensorte sind, sind andere Kanäle weniger selektiv. Tetramere Ionenkanäle weisen eine gemeinsame Grundarchitektur auf, von der nur ionotrope Glutamatrezeptoren (iGluRs) abweichen, deren Struktur im Vergleich zu den anderen invertiert ist. Eine Untergruppe der iGluRs stellen α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid Rezeptoren (AMPARs) dar, welche im Zentralnervensystem von Wirbeltieren die Mehrheit der exzitatorischen Neurotransmission übernehmen. Eine einzelne posttranskriptionelle Veränderung (Glutamin zu Arginin) an der Spitze des Selektivitätsfilters (SF, Q/R Stelle) von AMPAR-Typ 2 (GluA2) macht den Kanal quasi undurchlässig für Ca2+. Das Ziel dieser Arbeit war das Erstellen einer GluA2-Kanalchimäre mit Hilfe des bakteriellen Kanals NaK. Mutation rund um die Q/R Stelle wurden nicht toleriert von der Chimäre, während C-terminale Mutationen des SF stabil waren und für strukturelle Studien verwendet wurden. Die Entfernung einer Aminosäure im Vergleich zum NaK Wildtyp erzeugte eine Begradigung des SF und eine Erweiterung der wassergefüllten Ausbuchtung. Überraschenderweise kristallisierten die NaK Chimären überwiegend in zweifach symmetrischer Anordnung. Vor allem im SF kam es zu ausgeprägter lokaler Asymmetrie, unabhängig von der Ionenzusammensetzung. Um die Flexibilität des SF näher zu untersuchen, wurden Aminosäuren von NaK in GluA2 integriert und mithilfe von Patch-clamp Elektrophysiologie untersucht. Gleichsam wie in NaK, wurden Mutationen an der Filterspitze nicht toleriert, wohingegen die C-terminale Hälfte problemlos ausgetauscht werden konnte. Die funktionelle Integrität der NaK Chimäre wurde mithilfe von Einzelkanalmessungen in Bilayern überprüft. Zusätzlich wurden, auf Basis der gelösten Strukturen, Molekulardynamiksimulationen durchgeführt, welche einen dynamischen Einblick in den Permeationsmechanismus erlauben. / Ion channels play an important role in many physiological processes, for example the generation of action potentials. While some channels display high selectivity for one ion species, others are more promiscuous. All tetrameric cation channels share the same principal architecture, but the transmembrane domain of ionotropic glutamate receptors (iGluRs) is inverted relative to the other members. A subfamily of iGluRs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), mediates the vast majority of excitatory neurotransmission in the vertebrate central nervous system. In AMPA-type 2 iGluRs (GluA2), a single post-transcriptional modification (glutamine to arginine) at the tip of the selectivity filter (SF, Q/R site) renders the channel Ca2+ impermeable. The aim of this thesis was therefore to create an AMPAR pore mimic by using the bacterial channel NaK. Unfortunately, mutations around the Q/R site abolished expression of the NaK-GluA2 chimera, while C-terminal mutations of the SF were stable and could be used for structural studies. The shortening of the SF by one amino acid caused a straightening and opened an extended water-filled vestibule. Strikingly, most of the tested chimeras exhibited twofold symmetry with strong local asymmetry in the mutated part of the SF independent of the ion type present. For functional tests, residues from NaK wt were also swapped into GluA2. N-terminal mutations abolished the current response, whereas C-terminal mutations behaved wt-like. Single-channel bilayer experiments confirmed the functional integrity of the NaK-GluA2 chimera. Additionally, extensive molecular dynamics simulations, based on the solved structures, were carried out alongside. In summary, it could be demonstrated that the SF of the non-selective NaK-GluA2 chimera is highly flexible and accommodated all tested ions. Ion binding is accompanied by local asymmetric rearrangements, possibly creating an energetically simple way to allow permeation.

Page generated in 0.053 seconds