• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réticulation de trypsine avec le glutaraldéhyde pour la cartographie peptidique par électrophorèse capillaire, chromatographie liquide et spectrométrie de masse

Migneault, Isabelle January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Formation et caractérisation de gels de globulines de soya réticulés comme systèmes de libération de molécules actives

Caillard, Romain 13 April 2018 (has links)
Les protéines de soya constituent un substrat très avantageux pour la formation de systèmes de libération de molécules actives. Les globulines du soya montrent en effet des propriétés fonctionnelles remarquables, notamment gélifiantes, permettant leur utilisation dans la formation d 'hydrogels. Afin de former des gels aux propriétés de libération modulables, la formation de gels de protéines de soya par réticulation a été envisagée. Le présent travail vise à étudier l'impact de la nature de l'agent réticulant employé: le glycéraldéhyde versus le glutaraldéhyde, de leur concentration ainsi que des conditions de formation des gels, plus particulièrement la présence de chlorure de sodium, sur les propriétés macroscopiques des gels, leur microctructure ainsi que leurs propriétés de libération in vitro. Les résultats de ces travaux ont montré que les propriétés macroscopiques étaient très influencées par l'agent réticulant employé, sa concentration ainsi que par la présence de sel lors de la formation des gels. Ainsi, une augmentation du degré de réticulation des gels ou l' aj out de sels durant leur formation conduirait à des changements importants dans les propriétés rhéologiques des gels ainsi que dans leur gonflement. Au contraire, une modification du degré de réticulation des gels et/ ou l'ajout de chlorure de sodium ne conduirait qu'à pas ou peu de changement dans les propriétés moléculaires des gels (structure secondaire des protéines) ou dans leurs propriétés microstructurales, notamment dans la valeur prise par la dimension fractale des flocs composant les gels. Il apparaît donc que la réticulation des globulines de soya conduirait à l'obtention de systèmes aux propriétés macroscopiques modulables mais aux propriétés microscopiques inchangées. Des études de dissolution in vitro ont montré que le degré de réticulation des gels influait sur leurs propriétés de libération. Toutefois, un effet majeur de la charge ionique des molécules piégées au sein du gel ainsi que des conditions physico-chimiques (pH, présence d'enzymes) a été démontré. Par conséquent, si le degré de réticulation des gels ne montre qu'une faible influence sur les phénomènes de libération, les propriétés ioniques de la molécule à libérer et des protéines constituant le gel semblent avoir une importance capitale.
3

Characterization of glutaraldehyde-immobilized chymotrypsin and an in-situ immobilized enzyme reactor using capillary electrophoresis-based peptide mapping

Ghafourifar, Golfam 04 1900 (has links)
La digestion enzymatique des protéines est une méthode de base pour les études protéomiques ainsi que pour le séquençage en mode « bottom-up ». Les enzymes sont ajoutées soit en solution (phase homogène), soit directement sur le gel polyacrylamide selon la méthode déjà utilisée pour l’isolation de la protéine. Les enzymes protéolytiques immobilisées, c’est-à-dire insolubles, offrent plusieurs avantages tels que la réutilisation de l’enzyme, un rapport élevé d’enzyme-sur-substrat, et une intégration facile avec les systèmes fluidiques. Dans cette étude, la chymotrypsine (CT) a été immobilisée par réticulation avec le glutaraldehyde (GA), ce qui crée des particules insolubles. L’efficacité d’immobilisation, déterminée par spectrophotométrie d’absorbance, était de 96% de la masse totale de la CT ajouté. Plusieurs différentes conditions d’immobilisation (i.e., réticulation) tels que la composition/pH du tampon et la masse de CT durant la réticulation ainsi que les différentes conditions d’entreposage tels que la température, durée et humidité pour les particules GA-CT ont été évaluées par comparaison des cartes peptidiques en électrophorèse capillaire (CE) des protéines standards digérées par les particules. Les particules de GA-CT ont été utilisés pour digérer la BSA comme exemple d’une protéine repliée large qui requit une dénaturation préalable à la digestion, et pour digérer la caséine marquée avec de l’isothiocyanate de fluorescéine (FITC) comme exemple d’un substrat dérivé afin de vérifier l’activité enzymatique du GA-CT dans la présence des groupements fluorescents liés au substrat. La cartographie peptidique des digestions par les particules GA-CT a été réalisée par CE avec la détection par absorbance ultraviolet (UV) ou fluorescence induite par laser. La caséine-FITC a été, en effet, digérée par GA-CT au même degré que par la CT libre (i.e., soluble). Un microréacteur enzymatique (IMER) a été fabriqué par immobilisation de la CT dans un capillaire de silice fondu du diamètre interne de 250 µm prétraité avec du 3-aminopropyltriéthoxysilane afin de fonctionnaliser la paroi interne avec les groupements amines. Le GA a été réagit avec les groupements amine puis la CT a été immobilisée par réticulation avec le GA. Les IMERs à base de GA-CT étaient préparé à l’aide d’un système CE automatisé puis utilisé pour digérer la BSA, la myoglobine, un peptide ayant 9 résidus et un dipeptide comme exemples des substrats ayant taille large, moyenne et petite, respectivement. La comparaison des cartes peptidiques des digestats obtenues par CE-UV ou CE-spectrométrie de masse nous permettent d’étudier les conditions d’immobilisation en fonction de la composition et le pH du tampon et le temps de réaction de la réticulation. Une étude par microscopie de fluorescence, un outil utilisé pour examiner l’étendue et les endroits d’immobilisation GA-CT dans l’IMER, ont montré que l’immobilisation a eu lieu majoritairement sur la paroi et que la réticulation ne s’est étendue pas si loin au centre du capillaire qu’anticipée. / Digesting proteins using proteolytic enzymes is a standard method in proteomic studies and bottom-up protein sequencing. Enzymes can be added in solution or gel phase depending on how the protein has been isolated. Immobilized, i.e., insoluble, proteolytic enzymes offer several advantages such as reusability of enzyme, high enzyme-to-substrate ratio, and integration with fluidic systems. In this study, we prepared glutaraldehyde-crosslinked chymotrypsin (GA-CT), which creates insoluble particles. The immobilization efficiency was determined by absorbance spectrophotometry and found to be 96% of the total amount of chymotrypsin added. Different immobilization (i.e., crosslinking) conditions such as buffer composition/pH and initial mass of CT during crosslinking as well as different storage conditions such as temperature, time and humidity for the GA-CT particles were evaluated by comparing capillary electrophoretic (CE) peptide maps of protein standards digested with the particles. The GA-CT particles were used to digest BSA as an example of a large folded protein that needs denaturation prior to digestion, and casein-fluorescein isothiocyanate (FITC) as an example of a small, labeled substrate to test enzyme activity in the presence of substrate-bound fluorescent groups. Peptide mapping of digests from GA-CT particles was achieved by CE with ultraviolet (UV) absorbance or laser induced fluorescence (LIF) detection. FITC-labeled casein was digested by GA-CT to the same extent as with free (i.e., soluble) CT. An immobilized enzyme microreactor (IMER) was fabricated by immobilizing CT inside a 250 µm i.d. fused-silica capillary tube pre-treated with 3-aminopropyltriethoxysilane to functionalize the inner walls with amine groups. Glutaraldehyde was reacted with the amine groups and then CT was immobilized by crosslinking to the GA. IMERs based on GA-CT were fabricated using an automated CE system and used to digest BSA, myoglobin, a 9-residue peptide and a dipeptide as examples of large, medium and small substrates. Digests were studied by comparing peptide maps obtained by CE coupled to either UV or mass spectrometric (MS) detection in order to evaluate immobilization conditions as a function of buffer composition/pH and reaction times. A separate study, which used fluorescence microscopy to investigate the extent and location of GA-CT immobilization in the IMER, showed that immobilization only takes place primarily near the capillary walls and that crosslinking does not extend as far into the center of the IMER as had been expected.
4

Développement d'un microréacteur à base d'enzyme protéolytique réticulée avec le glutaraldéhyde pour la cartographie peptidique

Nguyen, Quynh Vy January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
5

Développement d'un microréacteur à base d'enzyme protéolytique réticulée avec le glutaraldéhyde pour la cartographie peptidique

Nguyen, Quynh Vy January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
6

A study of chymotrypsin immobilization conditions for improved peptide mapping

Elshalale, Fatma 03 1900 (has links)
No description available.
7

Marquage fluorescent des protéines pour étudier les enzymes protéolytiques solubles et immobilisées par la cartographie peptidique électrophorétique

Gan, Shao MIng 06 1900 (has links)
La cartographie peptidique est une méthode qui permet entre autre d’identifier les modifications post-traductionnelles des protéines. Elle comprend trois étapes : 1) la protéolyse enzymatique, 2) la séparation par électrophorèse capillaire (CE) ou chromatographie en phase liquide à haute performance (HPLC) des fragments peptidiques et 3) l’identification de ces derniers. Cette dernière étape peut se faire par des méthodes photométriques ou par spectrométrie de masse (MS). Au cours de la dernière décennie, les enzymes protéolytiques immobilisées ont acquis une grande popularité parce qu’elles peuvent être réutilisées et permettent une digestion rapide des protéines due à un rapport élevé d’enzyme/substrat. Pour étudier les nouvelles techniques d’immobilisation qui ont été développées dans le laboratoire du Professeur Waldron, la cartographie peptidique par CE est souvent utilisée pour déterminer le nombre total de peptides détectés et leurs abondances. La CE nous permet d’avoir des séparations très efficaces et lorsque couplée à la fluorescence induite par laser (LIF), elle donne des limites de détection qui sont 1000 fois plus basses que celles obtenues avec l’absorbance UV-Vis. Dans la méthode typique, les peptides venant de l’étape 1) sont marqués avec un fluorophore avant l’analyse par CE-LIF. Bien que la sensibilité de détection LIF puisse approcher 10-12 M pour un fluorophore, la réaction de marquage nécessite un analyte dont la concentration est d’au moins 10-7 M, ce qui représente son principal désavantage. Donc, il n’est pas facile d’étudier les enzymes des peptides dérivés après la protéolyse en utilisant la technique CE-LIF si la concentration du substrat protéique initial est inférieure à 10-7 M. Ceci est attribué à la dilution supplémentaire lors de la protéolyse. Alors, afin d’utiliser le CE-LIF pour évaluer l’efficacité de la digestion par enzyme immobilisée à faible concentration de substrat,nous proposons d’utiliser des substrats protéiques marqués de fluorophores pouvant être purifiés et dilués. Trois méthodes de marquage fluorescent de protéine sont décrites dans ce mémoire pour étudier les enzymes solubles et immobilisées. Les fluorophores étudiés pour le marquage de protéine standard incluent le naphtalène-2,3-dicarboxaldéhyde (NDA), la fluorescéine-5-isothiocyanate (FITC) et l’ester de 6-carboxyfluorescéine N-succinimidyl (FAMSE). Le FAMSE est un excellent réactif puisqu’il se conjugue rapidement avec les amines primaires des peptides. Aussi, le substrat marqué est stable dans le temps. Les protéines étudiées étaient l’-lactalbumine (LACT), l’anhydrase carbonique (CA) et l’insuline chaîne B (INB). Les protéines sont digérées à l’aide de la trypsine (T), la chymotrypsine (CT) ou la pepsine (PEP) dans leurs formes solubles ou insolubles. La forme soluble est plus active que celle immobilisée. Cela nous a permis de vérifier que les protéines marquées sont encore reconnues par chaque enzyme. Nous avons comparé les digestions des protéines par différentes enzymes telles la chymotrypsine libre (i.e., soluble), la chymotrypsine immobilisée (i.e., insoluble) par réticulation avec le glutaraldéhyde (GACT) et la chymotrypsine immobilisée sur billes d’agarose en gel (GELCT). Cette dernière était disponible sur le marché. Selon la chymotrypsine utilisée, nos études ont démontré que les cartes peptidiques avaient des différences significatives selon le nombre de pics et leurs intensités correspondantes. De plus, ces études nous ont permis de constater que les digestions effectuées avec l’enzyme immobilisée avaient une bonne reproductibilité. Plusieurs paramètres quantitatifs ont été étudiés afin d’évaluer l’efficacité des méthodes développées. La limite de détection par CE-LIF obtenue était de 3,010-10 M (S/N = 2,7) pour la CA-FAM digérée par GACT et de 2,010-10 M (S/N = 4,3) pour la CA-FAM digérée par la chymotrypsine libre. Nos études ont aussi démontrées que la courbe d’étalonnage était linéaire dans la région de travail (1,0×10-9-1,0×10-6 M) avec un coefficient de corrélation (R2) de 0,9991. / Peptide mapping is a routine method for identifying post-translational modifications of proteins. It involves three steps: 1) enzymatic proteolysis, 2) separation of the peptide fragments by capillary electrophoresis (CE) or high performance liquid chromatography (HPLC), 3) identification of the peptide fragments by photometric methods or mass spectrometry (MS). During the past decade, immobilized enzymes for proteolysis have been gaining in popularity because they can be reused and they provide fast protein digestion due to the high ratio of enzyme-to-substrate. In order to study new immobilization techniques developed in the Waldron laboratory, peptide mapping by CE is frequently used, where the total number of peptides detected and their abundance are related to enzymatic activity. CE allows very high resolution separations and, when coupled to laser-induced fluorescence (LIF), provides excellent detection limits that are 1000 times lower than with UV-Vis absorbance. In the typical method, the peptides produced in step 1) above are derivatized with a fluorophore before separation by CE-LIF. Although the detection sensitivity of LIF can approach 10 12 M for a highly efficient fluorophore, a major disadvantage is that the derivatization reaction requires analyte concentrations to be approx. 10 7 M or higher. Therefore, it is not feasible to study enzymes using CE-LIF of the peptides derivatized after proteolysis if the initial protein substrate concentration is <10-7 M because additional dilution occurs during proteolysis. Instead, to take advantage of CE-LIF to evaluate the efficiency of immobilized enzyme digestion of low concentrations of substrate, we propose using fluorescently derivatized protein substrates that can be purified then diluted. Three methods for conjugating fluorophore to protein were investigated in this work as a means to study both soluble and immobilized enzymes. The fluorophores studied for derivatization of protein standards included naphthalene-2,3-dicarboxaldehyde (NDA), fluoresceine-5-isothiocyanate (FITC) and 6-carboxyfluorescein N-succinimide ester (FAMSE). The FAMSE was found to be an excellent reagent that conjugates quickly with primary amines and the derivatized substrate was stable over time. The studied substrates were -lactalbumin (LACT), carbonic anhydrase (CA) and insulin chain-B (INB). The CE-LIF peptide maps were generated from digestion of the fluorescently derivatized substrates by trypsin (T), chymotrypsin (CT) or pepsin (PEP), either in soluble or insoluble forms. The soluble form of an enzyme is more active than the immobilized form and this allowed us to verify that the conjugated proteins were still recognized as substrates by each enzyme. The digestion of the derivatized substrates with different types of chymotrypsin (CT) was compared: free (i.e., soluble) chymotrypsin, chymotrypsin cross-linked with glutaraldehyde (GACT) and chymotrypsin immobilized on agarose gel particles (GELCT), which was available commercially. The study showed that, according to the chymotrypsin used, the peptide map would vary in the number of peaks and their intensities. It also showed that the digestion by immobilized enzymes was quite reproducible. Several quantitative parameters were studied to evaluate the efficacy of the methods. The detection limit of the overall method (CE-LIF peptide mapping of FAM-derivatized protein digested by chymotrypsin) was 3.010-10 M (S/N = 2.7) carbonic anhydrase using insoluble GACT and 2.010-10 M (S/N = 4.3) CA using free chymotrypsin. Our studies also showed that the standard curve was linear in the working region (1.0×10-9-1.0×10-6 M) with a correlation coefficient (R2) of 0.9991.
8

Marquage fluorescent des protéines pour étudier les enzymes protéolytiques solubles et immobilisées par la cartographie peptidique électrophorétique

Gan, Shao MIng 06 1900 (has links)
No description available.

Page generated in 0.0476 seconds