• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Halophilic Genes that Impact Plant Growth in Saline Soils

Meinzer, Mckay A. 10 April 2023 (has links)
Many plants are highly sensitive to salt in the soil, and their growth and yield can be greatly hindered by as little as less than 1% salt concentration in the soil. Additionally, soil salinity is a growing issue globally and affects significant areas in Utah. Halophytes are plants that are adapted to grow in saline soils and have been widely studied for their physiological and molecular characteristics, but little is known about their associated microbiomes. Bacteria were isolated from the rhizosphere and as root endophytes of Salicornia rubra, Sarcocornia utahensis, and Allenrolfea occidentalis, three native Utah halophytes. Several strains of halophilic bacteria have been isolated and screened for the ability to stimulate plant growth in saline conditions despite the high salt concentrations. Halomonas, Bacillus, and Kushneria species were consistently isolated both from the soil and as endophytes from roots of all three plant species at all collection times. Of the isolates tested for the ability to stimulate growth of alfalfa under saline conditions, Halomonas and Kushneria strains stimulated plant growth in the presence of 1% NaCl. The same bacteria used in the inoculation were recovered from surface sterilized alfalfa roots, indicating the ability of the inoculum to become established as an endophyte. This raises the question of whether these plant associated halophilic isolates contain genes that aid in plant growth promotion. We are interested in genomic sequencing of our Halomonas and Kushneria strains and performing genomic analysis to determine if there is a difference in genes between plant associated and non-plant associated halophilic isolates. We explored the hypothesis that certain bacterial properties have been selected for to aid plant growth. This was accomplished by performing whole genome sequencing of 26 Kushneria and Halomonas strains, both plant and non-plant associated. These strains came from freezer stocks of previously collected isolates as well as field trips to collect more samples. Halophilic bacteria were isolated from bulk soil, rhizosphere, and halophyte tissues (root and shoot tissues). The non-plant associated (bulk soil) halophilic Kushneria and Halomonas strains aided in determining if there are specific bacterial genes that are expressed in plant associated strains. Whole genome sequencing of the isolates was performed on the Oxford Nanopore platform. The sequence data was then assembled and annotated. The genomes were then included in a genome wide association study was performed. The results from the GWAS show that there is not a significant difference between plant and non-plant associated isolates, disproving our hypothesis. The results also show that few known genes for phytohormone synthesis were present in the pangenome, highlighting the need for further research to determine how these halophilic isolates aid in plant growth promotion in saline soils.
2

Exploring the Role of Salt-Tolerant Halomonas Inoculant in Altering Plant Gene Expression to Improve Salt Tolerance in Alfalfa.

Miller, Ashley Kay 14 August 2023 (has links) (PDF)
Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of large areas of farmland due to increased salt levels in the soil. Irrigation introduces salts to the soil that with time accumulate and threaten crop yield. In arid climates like Utah, the practice of irrigation is especially threatening to salt-sensitive crops including alfalfa (Medicago sativa). Plants that have tolerance to salt are needed to feed livestock and the world's population. One approach to address this problem is to introduce genes encoding salt tolerance into the genomes of salt-sensitive plants through genetic engineering, but this approach has limitations. These limitations include the misinformed public perception of genetically modified organisms (GMOs). Even if the GMO salt-tolerant plants could produce palatable foods, in regions of the world with saline soils incongruous with farming, if consumers refuse to purchase the food then the engineering and upfront costs of production are negated. Another fairly new approach involves the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. Several reports are now available demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. This enhanced plant growth is most likely associated with changes in plant gene expression; however, the mechanisms behind this growth stimulation are not yet clear. Halomonas elongata 1H9, a rhizobacteria native to Goshen UT, has been identified as a plant growth-promoting rhizobacteria (PGPR) when used as an inoculant added to alfalfa seedlings grown in salty soils. Plants grown in the presence of this Halomonas sp. and 1% salt demonstrated an average increase of 2.4x the biomass of alfalfa plants grown without inoculum in salty soils. This suggests that this Halomonas sp. positively influences plant salt tolerance, which raises the question as to how the bacteria stimulate plant growth under these conditions. To identify and characterize plant genes induced by Halomonas elongata, transcriptional analysis was performed using RNA-sequencing (RNA-seq). This analysis identified a variety of differentially expressed genes (DEGs) including transcription factors (e.g. MYB14, GATA transcription factor 9, Ethylene-responsive transcription factors ER017 and ER109) and plant enzymes involved in growth and development (e.g. xyloglucan endotransglucosylase and phosphodiesterase). This was followed by gene validation via real-time quantitative PCR (RT-qPCR), the gold standard for RNA-seq validation, however this process was never successfully completed. Suggestions for next steps are included in the discussion section of chapter 3.
3

Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms

AL HASSAN, MOHAMAD 19 January 2018 (has links)
[EN] Abstract Introduction Salinity and drought are the most important environmental stress conditions reducing crop yields worldwide and limiting the distribution of wild plants in nature. Soil salinity, especially secondary salinity caused by anthropogenic practices, such as prolonged irrigation, lead to substantial agricultural yield losses, especially in arid and semiarid regions. Drought, caused by reduced water content in the soil, occurs due to disorders in nature's water cycle, chiefly when evapotranspiration exceeds precipitation in a certain area, to the point where soil water reserves can no longer support plant growth. Drought and salt stress trigger the activation of a series of basic stress mechanisms that includes among others, the control of ion transport, exclusion and compartmentalization, as well as the accumulation of compatible solutes ('osmolytes'), and the activation of antioxidant systems. These mechanisms are conserved in all plants, stress tolerant and sensitive alike, and don't necessarily confer tolerance. To decipher those mechanisms and have a better understanding on the contribution of different stress responses to the stress tolerance of a given species, we have carried out comparative studies on the responses to drought and salinity in a number of genetically related taxa with different tolerance potentials. Methodology The experimental approach was mostly based on i) establishing the relative tolerance to water and salt stress in the studied species from their distribution in nature (in the case of wild species) and through the relative inhibition of growth in the presence of stress, and ii) correlating changes in the levels of biochemical 'stress markers' associated to specific response pathways (ion transport, osmolyte accumulation¿) upon stress treatments, with the already established relative tolerance to stress. This strategy proved to be appropriate to distinguish mere general responses to stress from those mechanisms relevant for stress tolerance of the investigated species and cultivars. The work also sheds light on other aspects affected by salt stress, specifically regarding germination and reproductive success or anatomical changes in salt-stressed plants. The expression patterns of the gene NHX1, encoding a vacuolar Na+/H+ antiporter were also studied in the Plantago taxa, as a first step in the full characterisation of this ion transporter, that appears to play an important role in the mechanisms of salt tolerance in this genus. Conclusion The results obtained in this work contribute to a better understanding of general stress tolerance mechanisms in plants, and provides clear insights into the mechanisms conferring tolerance, specifically, to drought and salt stress in some wild species and crops. This work also shed more light on the highly efficient responses to stress in halophytes, plants that could be viewed as nature's answer to the aforementioned adverse environmental conditions via evolution and adaptation. Halophytes can therefore be considered as a suitable source - underutilized at present, in our opinion - of knowledge, genetic resources and biotechnological tools for the needed improvement of stress tolerance in crops. / [ES] Resumen Introducción La salinidad y la sequía son las condiciones de estrés ambiental más importantes, que reducen los rendimientos de los cultivos en todo el mundo y que limitan la distribución de las plantas silvestres en la naturaleza. La salinidad del suelo, especialmente la salinización secundaria causada por prácticas antropogénicas, como la irrigación prolongada, conducen a pérdidas importantes de rendimiento agrícola, especialmente en las regiones áridas y semiáridas. La sequía, provocada por la reducción de contenido de agua en el suelo, se produce debido a alteraciones en el ciclo del agua en la naturaleza, principalmente cuando la evapotranspiración excede la precipitación en un área determinada, hasta el punto que las reservas de agua del suelo ya no pueden soportar el crecimiento de la planta. La sequía y el estrés salino desencadenan la activación de una serie de mecanismos básicos de respuesta, que incluyen entre otros el control del transporte, la exclusión y la compartimentación de iones, así como la acumulación de solutos compatibles ('osmolitos'), y la activación de sistemas antioxidantes. Estos mecanismos están conservados en todas las plantas, tolerantes y sensibles a estrés por igual, y no confieren necesariamente tolerancia. Para descifrar estos mecanismos y conseguir una mejor comprensión de la contribución de diferentes respuestas a estrés a la tolerancia al estrés en una especie dada, hemos llevado a cabo estudios comparativos sobre las respuestas a la sequía y la salinidad, en un número de taxones relacionados genéticamente con diferentes potenciales de tolerancia. Metodología El enfoque experimental se basó principalmente en i) establecer la tolerancia relativa al estrés hídrico y al estrés salino en las especies estudiadas, a partir de su distribución en la naturaleza (en el caso de especies silvestres) y atendiendo a la inhibición relativa de su crecimiento en presencia de estrés, y ii) correlacionar cambios en los niveles de 'marcadores bioquímicos de estrés' asociados a vías específicas de respuesta (transporte de iones, acumulación de osmolitos ...) inducidos por los tratamientos de estrés, con la tolerancia relativa a estrés de las plantas, previamente establecido. Esta estrategia ha resultado ser apropiada para distinguir meras respuestas generales a estrés de los mecanismos relevantes para la tolerancia a estrés de las especies y cultivares investigados. El trabajo también arroja luz sobre otros aspectos afectados por el estrés salino, específicamente en relación con la germinación y el éxito reproductivo, o cambios anatómicos en las plantas tratadas con sal. También se estudiaron los patrones de expresión del gen NHX1, que codifica un antiportador vacuolar Na+/H+, en las especies de Plantago, como un primer paso en la caracterización completa de este transportador de iones, que parece desempeñar un papel importante en los mecanismos de tolerancia a sal en este género. Conclusión Los resultados obtenidos en este trabajo contribuyen a una mejor comprensión de los mecanismos generales de tolerancia al estrés en plantas, y proporcionan ideas claras sobre los mecanismos que confieren tolerancia, en concreto, a la sequía y al estrés salino, en algunas especies silvestres y cultivadas. Este trabajo también arroja más luz sobre las respuestas a estrés altamente eficientes en halófitas, plantas que podrían ser vistas como la respuesta de la naturaleza a las condiciones ambientales adversas antes mencionadas, a través de la evolución y la adaptación. Por lo tanto, las halófitas pueden ser consideradas como una fuente adecuada - infrautilizada en la actualidad, en nuestra opinión - de conocimiento, recursos genéticos y herramientas biotecnológicas para la necesaria mejora de la tolerancia al estrés en plantas cultivadas. / [CA] Resum Introducció La salinitat i la sequera són les condicions d'estrès ambiental més importants, que redueixen els rendiments dels cultius a tot el món i que limiten la distribució de les plantes silvestres en la naturalesa. La salinitat del sòl, especialment la salinització secundària causada per pràctiques antropogèniques, com la irrigació perllongada, condueixen a pèrdues importants de rendiment agrícola, especialment en les regions àrides i semiàrides. La sequera, provocada per la reducció de contingut d'aigua en el sòl, es produeix a causa d'alteracions en el cicle de l'aigua en la naturalesa, principalment quan la evapotranspiració excedeix la precipitació en un àrea determinada, fins al punt que les reserves d'aigua del sòl ja no poden suportar el creixement de la planta. La sequera i l'estrès salí desencadenen l'activació d'una sèrie de mecanismes bàsics de resposta, que inclouen entre uns altres el control del transport, l'exclusió i la compartimentació d'ions, així com l'acumulació de soluts compatibles ('osmolits'), i l'activació de sistemes antioxidants. Aquests mecanismes estan conservats en totes les plantes, tolerants i sensibles a estrès per igual, i no confereixen necessàriament tolerància. Per a desxifrar aquests mecanismes i aconseguir una millor comprensió de la contribució de diferents respostes a estrès a la tolerància a l'estrès en una espècie donada, hem dut a terme estudis comparatius sobre les respostes a la sequera i la salinitat, en un nombre de taxons relacionats genèticament amb diferents potencials de tolerància. Metodologia L'enfocament experimental es va basar principalment en i) establir la tolerància relativa a l'estrès hídric i a l'estrès salí en les espècies estudiades, a partir de la seua distribució en la naturalesa (en el cas d'espècies silvestres) i atenent a la inhibició relativa de el seu creixement en presència d'estrès, i ii) correlacionar canvis en els nivells de 'marcadors bioquímics d'estrès' associats a vies específiques de resposta (transport d'ions, acumulació d'osmolits ...) induïts pels tractaments d'estrès, amb la tolerància relativa a estrès de les plantes, prèviament establert. Aquesta estratègia ha resultat ser apropiada per a distingir meres respostes generals a estrès dels mecanismes rellevants per a la tolerància a estrès de les espècies i conreus investigats. El treball també llança llum sobre altres aspectes afectats per l'estrès salí, específicament en relació amb la germinació i l'èxit reproductiu, o canvis anatòmics en les plantes tractades amb sal. També es van estudiar els patrons d'expressió del gen NHX1, que codifica un anti-portador vacuolar Na+/H+, en les espècies de Plantago, com un primer pas en la caracterització completa d'aquest transportador d'ions, que sembla exercir un paper important en els mecanismes de tolerància a sal en aquest gènere. Conclusió Els resultats obtinguts en aquest treball contribueixen a una millor comprensió dels mecanismes generals de tolerància a l'estrès en plantes, i proporcionen idees clares sobre els mecanismes que confereixen tolerància, en concret, a la sequera i a l'estrès salí, en algunes espècies silvestres i conreades. Aquest treball també llança més llum sobre les respostes a estrès altament eficients en halòfites, plantes que podrien ser vistes com la resposta de la naturalesa a les condicions ambientals adverses abans esmentades, a través de l'evolució i l'adaptació. Per tant, les halòfites poden ser considerades com una font adequada - infrautilitzada en l'actualitat, en la nostra opinió - de coneixement, recursos genètics i eines biotecnològiques per a la necessària millora de la tolerància a l'estrès en plantes conreades. / Al Hassan, M. (2016). Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61985 / TESIS

Page generated in 0.0487 seconds