• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 8
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 53
  • 18
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Kopplungen und Riesenmagnetowiderstand (GMR) in Mehrlagensystemen für die Magnetosensorik

Tietjen, Detlev 27 June 2003 (has links)
Die Messung magnetischer Felder ist in der Sensorik von großem Interesse. Benötigt werden dazu physikalische Effekte, die magnetische Größen in elektrische Größen umsetzen. Ein interessanter Vertreter ist dabei der Riesenmagnetowiderstand (GMR). Systeme, die den GMR zeigen, sind Thema dieser Arbeit. Die untersuchten Systeme lassen sich in zwei Typen einteilen: Multilagen bestehen aus einer großen Zahl (30-40) nominell identischer Doppellagen aus abwechselnd ferromagnetischem und nichtmagnetischem Metall. Diese Systeme zeigen eine Widerstandsänderung mit der Stärke des externen Magnetfeldes. Untersucht wurden Schichten Co/Cu und NiFe/Cu. Es konnten Schichten mit einer Sensitivität von 3.2%/mT präpariert werden. Für den Rückgang der Signalstärke bei erhöhten Temperaturen sind, abhängig von der Cu-Dicke, zwei unterschiedliche Mechanismen verantwortlich. Diese werden diskutiert. Spin Valves bestehen aus Einzellagen unterschiedlicher Materialien (antiferro-, ferro- und paramagnetisch), meist Metalle, die eine Widerstandsänderung mit der Richtung des externen Magnetfeldes zeigen. Untersucht wurden Systeme, die auf NiO, FeMn und IrMn basieren. Die Temperaturabhängigkeit dieser Systeme zeigt Eigenschaften, die für die kommerzielle Nutzung wichtig sein können. Die mikroskopischen Ursachen werden diskutiert. Ein neu entwickeltes, leistungsfähiges Modell kann das sensorische Verhalten dieser Systeme sehr gut nachbilden und erlaubt so einen Einblick in die internen Vorgänge.
32

Synthèse de multicouches Ge/GeMn en vue d'applications en spintronique et capteurs bio-chimiques / Synthesis of Ge/GeMn multilayers for applications in spintronics and bio-chemical sensors

Dau, Minh Tuan 23 November 2011 (has links)
L’objectif de cette thèse était de synthétiser des multicouches à base de couches ferromagnétiques GeMn qui sont empilées et séparées par des couches de Ge en utilisant la technique d'épitaxie par jets moléculaires.Outre de nombreuses applications en spintronique issues de cette structure de matériaux, la réalisation de capteurs biochimiques dédiés à la détection moléculaire est l’idée directrice de ce travail. Un tel dispositif présenterait les atouts que ses matériaux constituants apportent : haute sensibilité, sélectivité et compatibilité parfaite avec la technologie de Si-Ge. Dans la première partie de ce manuscrit sont présentés les résultats obtenus de la croissance d’hétérostructures Mn5Ge3, Mn5Ge3Cx sur Ge(111) puis la reprise d’épitaxie de la barrière de Ge sur Mn5Ge3, la première étape avant la croissance de la deuxième couche ferromagnétique. Nous avons également analysé les propriétés structurales et magnétiques de ces couches minces ainsi que les dificultés dues à la croissance de la couche de Ge, notamment la diffusion et la ségrégation. Deux approches utilisant le carbone ont été proposées pour réduire la ségrégation : barrière de diffusion en carbone et remplissage des sites interstitiels du réseau Mn5Ge3 par du carbone. Le second axe alternatif pour la synthèse est consacré à la croissance de la structure colonnaire empilée Ge1-xMnx. Les conditions pour obtenir la structure colonnaire ont été déterminées. Les propriétés structurales et mesures magnétiques ont montré que cette phase était particulièrement intéressant dans la famille des semiconducteurs ferromagnétiques dilués à base de Ge-Mn pour les applications en spintronique et croissance de multicouches. La reprise d’épitaxie de plusieurs couches ferromagnétiques séparées par Ge a été effectuée et l’étude du couplage magnétique a été également menée. Enfin, nous présentons les premiers résultats sur le greffage de porphyrines et de protéines sur diverses surfaces hydrophiles et hydrophobes (Si, Ge), permettant d’accéder aux études de la faisabilité des capteurs Ge/GeMn. L’ensemble de ce travail indique que les multicouches de Ge/GeMn apparaissent comme des candidats à fort potentiel pour la spintronique, notamment pour capteurs bio-chimiques dans les semi-conducteurs du groupe IV. / The objective of this thesis is to synthetize the multilayers based on the sandwiched structure of GeMn ferromagnetic layers by mean of Molecular Beam Epitaxy on Ge substrate. Applications in spintronic field from this study are potential such as structures of spin valves, nanoscale sensors devoted to the detection of biochemical molecules. We actually focus on the biochemical sensors based on GMR (or TMR) phenomenon in stacking layered structure. These devices offer many advantages that the constituent materials may provide : high sensibility, selectivity, and especially, compatibility with Si-Ge technology. The first part of this manuscript presents the results obtained of heterostructure growth of Mn5Ge3, Mn5Ge3Cx on Ge(111), then Ge overgrowth on Mn5Ge3, the first step to study multilayers growth. Also, we have discussed about the structural and magnetic properties of these thin films as well as the problems due to the growth of multilayers, especially the diffusion and segregation. The approaches to reduce the diffusion were proposed by introducing carbon atoms as diffusion barrier or by fulfilling insterstial sites of Mn5Ge3 lattice by carbon atoms. The second axis of materials synthesis is devoted to the growth of multilayers Ge1-xMnx nanocolumn structure. The growth condition of Ge1-xMnx nanocolumns has been determined. We have studied structural and magnetic properties of this phase which are of particular interest to spintronic applications and multilayers growth. The Ge/Ge1-xMnx nanocolumns multilayers have been done and the interlayer exchange coupling between ferromagnetic layers has been studied. Finally, we have presented the preliminary results of porphyrin molecules and protein grafting on hydrophilic and hydrophobic surfaces (Si and Ge). This allows accessing to study the feasibility of Ge/GeMn-based sensors. This work indicates that the Ge/GeMn mutilayers appear to be a potential candidate for spintronics and biochemical sensors in the group IV semi-conductors.
33

High Accuracy Speed and Angular Position Detection by Dual Sensor

Östling, Johan January 2018 (has links)
For many decades there has been a need in many industries to measure speed and position of ferrous gears. This is commonly done by converting passing gear teeth from trigger wheels to electrical impulses to calculate speed and angular position. By using Hall effect sensors or Giant Magnetoresistance sensors (GMR), a zero speed detection of gear teeth is possible while at the same time be cheap to produce and durable for harsh environments. A specially designed trigger-wheel (cogwheel created for measurements) with gear teeth in a specific pattern, exact position can be detected by using a dual sensor, even when no earlier information is available. The new design of trigger-wheel also makes this new method more accurate and universal compared to previous solutions. This thesis demonstrates and argues for the advantages of using a dual sensor for speed and angular position detection on gear wheels. Were one sensor do quantitative measurements for pattern detection in the teeth arrangements and the other sensor do qualitative measurements for position detection.
34

Investigation of rotational velocity sensors

Törnquist, Martin January 2008 (has links)
<p><p>To improve the speed measurement of construction equipment, different sensor technologies have been investigated. Many of these sensor technologies are very interesting but to keep the extent of the thesis only two was chosen for testing, magnetic absolute angle sensors using Hall and GMR technology, to investigate if those are a valid replacement for the current measurement system that is using a passive sensor. Tests show that these sensors are capable of speed measurement, but because of noisy angle estimates they need filtering for good speed computation. This filtering introduces a large time delay that is of significance for the quality of the estimate. A Kalman filter has been implemented in an attempt to lower the time delays but since only a very simple model has been used it does not give any improvements over ordinary low pass filtering. For these sensors the mounting tolerance is of great interest. For best performance the offset between the sensor and magnet centres need to be kept small for both sensors. This is due to a non-linearity effect this causes. The distance between the sensors and the magnet is not critical for linearity issues, but only for the quality of the signal, where it might drop out when the distance is too large. This is where the sensor using GMR technology stands out. Compared to the Hall technology sensor, the GMR sensor can handle distances that are more than 10 times larger. The conclusion is that these sensors can be a valid replacement of the current measurement system. They will introduce more functionality with the capability of detecting rotational direction and zero velocity. In an application with more than one sensor they can also be used for more purposes, like detecting slip in clutches etc. Depending on the application, the time delays may not be critical, else more work need to be done to improve the estimate, e.g. with a more advanced model for the Kalman filter.</p></p><p> </p>
35

Ion Tracks for Micro- and Nanofabrication : From Single Channels to Superhydrophobic Surfaces

Spohr, Reimar January 2010 (has links)
A method is described for preset-count irradiations between 1 and 100 ions singling-out individual ions from an ion beam with more than a billion ions arriving per second. The ion tracks are etched in a conductometric system with real-time evaluation of the acquired data. The etch process can be interrupted when reaching a preset channel diameter. Cylindrical channels are obtained by adding surfactants to the etch solution forming a self-assembled barrier between etching medium and polymer. Asymmetric etching of single ion tracks leads to pH sensitive conical pores with diode-like properties. Using etched channels as template, homogeneous and multilayer magnetic single-wires are electrodeposited. The magnetoresistivity of the wires is studied. Single-track applications comprise critical apertures (cylindric, conic, necked), asymmetric pores (pH sensitive, biospecific), Giant Magneto Resistance sensors, and spintronic devices. On the basis of studies with individual ion tracks we tackled tilted multiporous systems such as ion beam lithography with a masked ion beam leading to micro-structures with inclined walls and anisotropic superhydrophobic ion track textures, analogous to biological shingle structures on butterfly wings. We demonstrated qualitatively, that the asymmetry of the texture translates into motion under ultrasonic agitation. This could lead to the development of rotary drives.
36

Investigation of rotational velocity sensors

Törnquist, Martin January 2008 (has links)
To improve the speed measurement of construction equipment, different sensor technologies have been investigated. Many of these sensor technologies are very interesting but to keep the extent of the thesis only two was chosen for testing, magnetic absolute angle sensors using Hall and GMR technology, to investigate if those are a valid replacement for the current measurement system that is using a passive sensor. Tests show that these sensors are capable of speed measurement, but because of noisy angle estimates they need filtering for good speed computation. This filtering introduces a large time delay that is of significance for the quality of the estimate. A Kalman filter has been implemented in an attempt to lower the time delays but since only a very simple model has been used it does not give any improvements over ordinary low pass filtering. For these sensors the mounting tolerance is of great interest. For best performance the offset between the sensor and magnet centres need to be kept small for both sensors. This is due to a non-linearity effect this causes. The distance between the sensors and the magnet is not critical for linearity issues, but only for the quality of the signal, where it might drop out when the distance is too large. This is where the sensor using GMR technology stands out. Compared to the Hall technology sensor, the GMR sensor can handle distances that are more than 10 times larger. The conclusion is that these sensors can be a valid replacement of the current measurement system. They will introduce more functionality with the capability of detecting rotational direction and zero velocity. In an application with more than one sensor they can also be used for more purposes, like detecting slip in clutches etc. Depending on the application, the time delays may not be critical, else more work need to be done to improve the estimate, e.g. with a more advanced model for the Kalman filter.
37

Side Channel Analysis of a Java-­based Contactless Smart Card

Mateos Santillan, Edgar January 2012 (has links)
Smart cards are widely used in different areas of modern life including identification, banking, and transportation cards. Some types of cards are able to store data and process information as well. A number of them can run cryptographic algorithms to enhance the security of their transactions and it is usually believed that the information and values stored in them are completely safe. However, this is generally not the case due to the threat of the side channel. Side channel analysis is the process of obtaining additional information from the internal activity of a physical device beyond that allowed by its specifications. There exist different techniques to attempt to obtain information from a cryptosystem using other ways than the normally permitted. This thesis presents a series of experiments intended to study the side channel from a particular type of smart card, known as Java Cards. This investigation uses the well known technique, Correlation Analysis, and a new type of side channel attack called fast correlation in the frequency domain to study the side channel of Java Cards. This research presents a giant magnetoresistor (GMR) probe and for the first time, this type of sensor is used to investigate the side channel. A novel setup designed for studying the side channel of smart cards is described and two metrics used to evaluate the analysis results are presented. After testing the GMR probe and methodology on electronic devices executing the Advanced Encryption Standard (AES), such as 8 bit microcontrollers and 128 bit AES implementations on FPGAs, these techniques were applied to analyse two different models of Java Cards working in the contactless mode. The results show that successful attacks on a software implementation of AES running on both models of Java Cards are possible.
38

Spin-polarized transport in magnetic nanostructures

O'Gorman, Brian Curtin 19 January 2011 (has links)
Two of the principal phenomena observed and exploited in the field of spintronics are giant magnetoresistance (GMR) and spin transfer torque (STT). With GMR, the resistance of a magnetic multilayer is affected by the relative orientation of its magnetic layers due to (electron) spin dependent scattering. For the STT effect, a spin-polarized electric current is used to alter the magnetic state of a ferromagnet. Together, GMR and STT are at the foundation of numerous technologies, and they hold promise for many more applications. To achieve the high current densities (~10¹² A/m²) that are necessary to observe STT effects, point contacts – constricted electrical pathways (~1–100 nm in diameter) between conducting materials – are often used because of their small cross-sectional areas. In this sense, we have explored STT in bilayer magnetic nanopillars, where an electric current was used to induce precession of a ferromagnetic layer. This precessional state was detected as an increase in resistance of the device, akin to GMR. Temperature dependent measurements of the onset of precession shed light on the activation mechanism, but raised further questions about its detailed theory. Point contacts can also be used as local sources or detectors of electrons. In this context, we have observed transverse electron focusing (TEF) in a single crystal of bismuth. TEF is a k-selective technique for studying electron scattering from within materials. Using lithographically fabricated point contacts, we have studied the temperature dependence of the relaxation time for ballistic electrons from 4.2 to 100 K. These measurements indicated a transition between electron-electron dominated scattering at low temperatures and electron-phonon scattering as the Debye temperature was approached. We present preliminary work toward a TEF experiment to measure spin dependent scattering from a non-magnet/magnet interface. We also investigated spin wave propagation in thin, magnetic waveguide structures. At the boundary between the waveguide and continuous magnetic film, spin wave rays were found to radiate into the film, or to reflect and form standing waves in the waveguide. A circular defect in the waveguide was observed to cause diffraction of spin waves, generating an interference pattern of higher modes of oscillation. / text
39

Side Channel Analysis of a Java-­based Contactless Smart Card

Mateos Santillan, Edgar January 2012 (has links)
Smart cards are widely used in different areas of modern life including identification, banking, and transportation cards. Some types of cards are able to store data and process information as well. A number of them can run cryptographic algorithms to enhance the security of their transactions and it is usually believed that the information and values stored in them are completely safe. However, this is generally not the case due to the threat of the side channel. Side channel analysis is the process of obtaining additional information from the internal activity of a physical device beyond that allowed by its specifications. There exist different techniques to attempt to obtain information from a cryptosystem using other ways than the normally permitted. This thesis presents a series of experiments intended to study the side channel from a particular type of smart card, known as Java Cards. This investigation uses the well known technique, Correlation Analysis, and a new type of side channel attack called fast correlation in the frequency domain to study the side channel of Java Cards. This research presents a giant magnetoresistor (GMR) probe and for the first time, this type of sensor is used to investigate the side channel. A novel setup designed for studying the side channel of smart cards is described and two metrics used to evaluate the analysis results are presented. After testing the GMR probe and methodology on electronic devices executing the Advanced Encryption Standard (AES), such as 8 bit microcontrollers and 128 bit AES implementations on FPGAs, these techniques were applied to analyse two different models of Java Cards working in the contactless mode. The results show that successful attacks on a software implementation of AES running on both models of Java Cards are possible.
40

Solid State Chemistry Of Transition Metal Oxides With Fascinating Properties

Mahesh, R 02 1900 (has links) (PDF)
No description available.

Page generated in 0.0431 seconds