• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Developing New Strategies for the Preparation of Micro- and Nano-structured Polymer Materials

Nie, Zhihong 19 January 2009 (has links)
This thesis described the development of new strategies for the preparation of micro- and nano-structured polymer materials. In particular, this thesis focused on: i) the synthesis of polymer particles in microreactors, and ii) the self-assembly of inorganic nanorods. First, this thesis presented the synthesis of polymer particles and capsules with pre-determined sizes and narrow size distributions (CV<2%) in continuous microfluidic reactors. The method includes (i) the emulsification of monomers in a microfluidic flow-focusing device and (ii) in-situ solidification of droplets via photopolymerization. This microfluidic synthesis provides a novel strategy for the control over the shapes, compositions, and morphologies of polymer particles. In particular, we demonstrated the control over particle shapes by producing polymer ellipsoids, disks, rods, hemispheres, plates, and bowls. We produced polymer particles loaded with dyes, liquid crystals, quantum dots, and magnetic nanoparticles. We generated core-shell particles, microcapsules, Janus and three-phasic polymer particles. Control over the number of cores per droplet was achieved by manipulating the flow rates of liquids in the microchannels. We further investigated the hydrodynamic mechanism underlying the emulsification of droplets, which helps in guiding scientists and engineers to utilize this technique. Second, we described the self-assembly of inorganic nanorods by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tethered with hydrophobic polystyrene chains at both ends. We organized metal nanorods in structures with various geometries such as nanorings, nanochains, bundles, bundled nanochains, and nanospheres by tuning solely the quality of solvents. The self-assembly was tunable and reversible. This approach paved the way for the organization of anisotropic nanoparticles by using the strategies that are well-established for the self-assembly of block copolymers. We further described a systematic study of the self-assembly of polymer-tethered gold nanorods as a function of solvent composition in the system and the molecular weight of the polystyrene blocks. We found that the structure of the polymer pom-poms played an important role on the organization of polymer-tethered gold NRs. The 'supramolecular' assembly was governed by the competition between the end-to-end and side-by-side association of NRs and resulted in the controlled variation of the plasmonic properties of NRs, reflected in a 3-D plasmonic graph.
32

Developing New Strategies for the Preparation of Micro- and Nano-structured Polymer Materials

Nie, Zhihong 19 January 2009 (has links)
This thesis described the development of new strategies for the preparation of micro- and nano-structured polymer materials. In particular, this thesis focused on: i) the synthesis of polymer particles in microreactors, and ii) the self-assembly of inorganic nanorods. First, this thesis presented the synthesis of polymer particles and capsules with pre-determined sizes and narrow size distributions (CV<2%) in continuous microfluidic reactors. The method includes (i) the emulsification of monomers in a microfluidic flow-focusing device and (ii) in-situ solidification of droplets via photopolymerization. This microfluidic synthesis provides a novel strategy for the control over the shapes, compositions, and morphologies of polymer particles. In particular, we demonstrated the control over particle shapes by producing polymer ellipsoids, disks, rods, hemispheres, plates, and bowls. We produced polymer particles loaded with dyes, liquid crystals, quantum dots, and magnetic nanoparticles. We generated core-shell particles, microcapsules, Janus and three-phasic polymer particles. Control over the number of cores per droplet was achieved by manipulating the flow rates of liquids in the microchannels. We further investigated the hydrodynamic mechanism underlying the emulsification of droplets, which helps in guiding scientists and engineers to utilize this technique. Second, we described the self-assembly of inorganic nanorods by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tethered with hydrophobic polystyrene chains at both ends. We organized metal nanorods in structures with various geometries such as nanorings, nanochains, bundles, bundled nanochains, and nanospheres by tuning solely the quality of solvents. The self-assembly was tunable and reversible. This approach paved the way for the organization of anisotropic nanoparticles by using the strategies that are well-established for the self-assembly of block copolymers. We further described a systematic study of the self-assembly of polymer-tethered gold nanorods as a function of solvent composition in the system and the molecular weight of the polystyrene blocks. We found that the structure of the polymer pom-poms played an important role on the organization of polymer-tethered gold NRs. The 'supramolecular' assembly was governed by the competition between the end-to-end and side-by-side association of NRs and resulted in the controlled variation of the plasmonic properties of NRs, reflected in a 3-D plasmonic graph.
33

Nanocarrier mediated therapies for the gliomas of the brain.

Agarwal, Abhiruchi 21 January 2011 (has links)
Existing methods of treating glioma are not effective for eradicating the disease. Therefore, new and innovative methods of treatment alone or in combination with existing therapies are necessary. Delivery of therapeutic agents through delivery carriers such as liposomes diminishes the harmful effects of the agent in healthy tissues and allows increased accumulation in the tumor. In addition, targeted chemotherapy using liposomes provides the opportunity for further increase in drug accumulation in tumor. However, the current targeting strategies suffer accelerated plasma clearance and are not advantageous in improving efficacy. The search for new tumor targets, novel ligands, new strategies for targeting, and particle stabilization will advance our ability to improve delivery at the tumor level while decreasing toxicity to normal tissues. The global objective of this thesis was to improve the status of current liposomal therapy to achieve higher efficacy in tumors. Here, we show a novel mechanism to increase targeting to tumor while uncompromising on the long circulation of stealth liposomes. Long circulation is essential for passive accumulation of the nanocarriers due to EPR effect, in order to see benefits of targeting. Using phage display technique, a variety of tumor specific peptides were identified for use as targeting moieties. One potential advantage of the approach proposed here is the rapid identification of patient tumor specific peptide that evades the RES. This could lead to the development of a nanocarrier system with high avidity and selectivity for tumors. Therefore, tumor accumulation of the targeted formulations will be higher than that of non‐targeted liposomes due to increased drug retention at the tumor site and uncompromised blood residence time.In addition, it has been shown that the distribution of nanocarriers, spatially within the tumor, is limited that might further hinder the distribution of the encapsulated drug, thereby limiting efficacy. It is necessary to release the drug from within the nanocarrier to promote increased efficacy. Here, we were able to address the problem of drug diffusion within the tumor interstitium using a combination therapy employing a remotely triggered thermosensitive liposomal chemotherapeutic. We fabricated a thermosensitive liposomal nanocarrier that maintained its stability at physiological temperature to minimize toxicity to healthy cells. We, then, showed a remote triggering mechanism mediated by gold nanorods heated via NIR can help in achieving precise control over the desired site for drug release. These strategies enabled increased drug availability at the tumor site and contributed to tumor retardation. Additionally, we show that the synergistic therapy employing gold nanorods and thermosensitive liposomes may have great potential to be translated to the clinic.
34

GOLD NANOSPHERES AND GOLD NANORODS AS LOCALIZED SURFACE PLASMON RESONANCE SENSORS

Matcheswala, Akil Mannan 01 January 2010 (has links)
A novel localized surface plasmon resonance (LSPR) sensor that differentiates between background refractive index changes and surface-binding of a target analyte (e.g. a target molecule, protein, or bacterium) is presented. Standard, single channel LSPR sensors cannot differentiate these two effects as their design allows only one mode to be coupled. This novel technique uses two surface plasmon modes to simultaneously measure surface binding and solution refractive index changes. This increases the sensitivity of the sensor. Different channels or modes can be created in sensors with the introduction of gold nanospheres or gold nanorods that act as receptor mechanisms. Once immobilization was achieved on gold nanospheres, the technique was optimized to achieve the same immobilization for gold nanorods to get the expected dual mode spectrum. Intricate fabrication methods are illustrated with using chemically terminated self assembled monolayers. Then the fabrication process advances from chemically silanized nanoparticles, on to specific and systematic patterns generated with the use of Electron Beam Lithography. Comparisons are made within the different methods used, and guidelines are set to create possible room for improvement. Some methods implemented failed, but there was a lot to learn from these unsuccessful outcomes. Finally, the applications of the dual mode sensor are introduced, and current venues where the sensors can be used in chemical and biological settings are discussed.
35

[en] STUDY OF INTERACTIONS OF THE ANTIBIOTIC NORFLOXACIN AND ITS COPPER-PHENANTHROLINE COMPLEX WITH DRUG DELIVERY SYSTEMS / [pt] ESTUDO DE INTERAÇÕES DO ANTIBIÓTICO NORFLOXACINA E DO SEU COMPLEXO DE COBRE-FENANTROLINA COM SISTEMAS DE DISTRIBUIÇÃO CONTROLADA DE MEDICAMENTOS

GLEICE CONCEICAO MENDONCA GERMANO 10 January 2019 (has links)
[pt] Os sistemas de administração controlada de medicamentos (drug delivery) permitem a introdução de uma substância terapêutica no organismo e melhoram sua eficácia e segurança, controlando a taxa, o tempo e o local de liberação, o que diminui os efeitos colaterais.Nesse trabalho nos dedicamos a estudar dois possíveis sistemas de administração de fármacos: lipossomos associados a surfactantes, já bastante utilizados em farmacologia, e nanobastões de ouro, cujas propriedades únicas têm sido avaliadas em aplicações biomédicas. Os lipossomos têm-se destacado devido a sua estabilidade e baixa toxicidade, os surfactantes são tensoativos muito usados tanto em farmacologia como para estabilizar soluções coloidais de nanopartículas. Já os nanobastões de ouro têm perspectivas promissoras para utilização em entrega de fármacos devido a suas propriedades óticas e biocompatibilidade. Estudamos, por meio de espectrofotometria de fluorescência e de absorção UV-visível, a associação entre esses sistemas e uma classe de fármacos denominada fluorquinolonas, que são antibióticos de amplo espectro bacteriano. A norfloxacina (NFX), pertencente à segunda geração de fluorquinolonas, foi escolhida para esse trabalho por ser naturalmente fluorescente, o que facilita a análise das interações sem a introdução de sondas extrínsecas ao sistema. Segundo a literatura, a associação da NFX com íons metálicos produz modificações nas propriedades desse fármaco, como solubilidade e biodisponibilidade. Essas mudanças têm sido avaliadas como uma possível solução ao problema de resistência bacteriana a antibióticos. Esse trabalho foi dividido em duas partes: na primeira, estudamos a formação dos complexos ternários de NFX com cobre-fenantrolina em presença de lipossomos associados a surfactantes que modificam a distribuição de carga elétrica superficial desses sistemas; na segunda parte estudamos a associação de NFX a nanobastões de ouro estabilizados por diferentes surfactantes. / [en] Drug delivery systems allow the introduction of a therapeutic substance into the body and improve its effectiveness and safety by controlling the rate, time and place of release, which reduces side effects. In this work, we study two possible drug delivery systems: liposomes associated with surfactants, which are already widely used in pharmacology, and gold nanorods, whose unique properties have been evaluated in biomedical applications. Liposomes have been remarkable because of their stability and low toxicity, and surfactants are widely used both in pharmacology and to stabilize colloidal solutions of nanoparticles. On the other hand, gold nanorods have promising perspectives for use in drug delivery due to their optical properties and biocompatibility.We study the association between these systems and a class of drugs called fluoroquinolones, which are broadspectrum bacterial antibiotics, using fluorescence spectrophotometry and UVvisible absorption. Norfloxacin (NFX), a second generation fluoroquinolone, was chosen because it is naturally fluorescent, which facilitates the analysis of interactions without the introduction of extrinsic probes into the system. According to the literature, the association of NFX with metal ions produces changes in the properties of this drug, such as solubility and bioavailability. These changes have been evaluated as a possible solution to the problem of bacterial resistance to antibiotics. This work was divided in two parts: first, we studied the formation of the ternary complexes of NFX with copper-phenanthroline in the presence of liposomes associated to surfactants that modify the distribution of surface electric charge of the systems; in the second part, we studied the association of NFX to gold nanorods stabilized by different surfactants.
36

Síntese, dinâmica de formação, caracterização e propriedades ópticas de nanobastões de ouro dispersos em meio aquoso e matrizes orgânicas / Synthesis, characterization, dynamic formation and optical properties of gold nanorods dispersed in aqueous phase and organic matrices

Silva, Monique Gabriella Angelo da 12 April 2010 (has links)
In this work, different colloidal gold nanorods were prepared dispersed in different liquid matrices. All gold nanorods were prepared from the acid tethrachloroauric (HAuCl4) in the presence of a reducing agent, using the seed mediated method. The cetyltrimethylammonium bromide (CTAB) was employed as director growth agent. The variable concentration of CTAB in the medium was evaluated in order to verify the selectivity in the formation of nanorods. In addition, we performed a kinetic study to obtain information about the formation mechanism of these particles. Colloid containing gold nanorods in organic matrices such as castor oil and hexafluorophosphate ionic liquid butylmethylilimidazolium (BMIM.PF6) were prepared in order to obtain colloid systems with different physico-chemical characteristics, however among same particles. These new colloids were obtained using the transfer technique of particles, which were synthesized in aqueous medium and then dispersed, after separation, for the desired organic matrix. All colloids were characterized by absorption spectroscopy at ultraviolet and visible (UV-Vis) and nanoparticles characterized by Transmission Electron Microscopy (TEM) / Neste trabalho, diferentes colóides contendo nanobastões de ouro dispersos em diferentes matrizes líquidas foram preparados a partir do ácido tetracloroáurico (HAuCl4), em presença de um agente redutor adequado, através do método mediado por sementes. O brometo de cetiltrimetilamônio (CTAB) foi empregado como agente direcionador de crescimento. A variável concentração de CTAB no meio foi avaliada com o objetivo de verificar a seletividade na formação de nanobastões. Além disso, foi realizado um estudo cinético para obter informações sobre o mecanismo de formação dessas partículas. Coloides contendo nanobastões de ouro em matrizes orgânicas como óleo de mamona e o líquido iônico hexafluorofosfato de butilmetilimidazólio (BMIM.PF6) foram preparados a fim de obter sistemas coloidais com diferentes características fisico-químicas porém com as mesmas partículas. Esses novos colóides foram obtidos através da técnica de transferência de partículas, as quais foram sintetizadas em meio aquoso e posteriormente dispersas, após separação, para a matriz orgânica desejada. Todos os colóides preparados foram caracterizados por Espectroscopia de absorção na região do ultravioleta e visível (UV-Vis) e as nanopartículas caracterizadas por Microscopia na eletrônica de transmissão (MET)
37

Charakterizace nanostrukturovaných elektrod pro elektrochemické biosenzory / Characterization of nanostructured electrodes for electrochemical biosensors

Kynclová, Hana January 2012 (has links)
Nowadays it is attached to a major effort to study applications of nanoparticles in biosensors technology. We studied the effect of gold nanoparticles on the surface of the electrodes by Electrochemical Impedance Spectroscopy method and Cyclic Voltammetry. For impedance measurements was proposed substitute electrical model and cyclic voltammetry method was used to determine the electroactive surface of electrodes.
38

Nanomaterial-decorated micromotors for enhanced photoacoustic imaging

Aziz, Azaam, Nauber, Richard, Sánchez Iglesias, Ana, Tang, Min, Ma, Libo, Liz-Marzán, Luis M., Schmidt, Oliver G., Medina-Sánchez, Mariana 13 November 2023 (has links)
Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end, photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents (Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micromotor’s surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding natural chromophores.
39

Implications of Shape Factors on Fate, Uptake, and Nanotoxicity of Gold Nanomaterials

Abtahi, Seyyed Mohammad Hossein 28 June 2018 (has links)
Noble metal nanoparticles such as gold and silver are of interest because of the unique electro-optical properties (e.g., localized surface plasmon resonance [LSPR]) that originate from the collective behavior of their surface electrons. These nanoparticles are commonly developed and used for biomedical and industrial application. A recent report has predicted that the global market for gold nanoparticles will be over 12.7 tons by year 2020. However, these surface-functionalized nanoparticles can be potential environmental persistent contaminants post-use due to their high colloidal stability in the aquatic systems. Despite, the environmental risks associated with these nanoparticles, just a few studies have investigated the effect of nanofeature factors such as size and shape on the overall fate/transport and organismal uptake of these nanomaterials in the aquatic matrices. This study presents a comprehensive approach to evaluate the colloidal stability, fate/transport, and organismal uptake of these nanoparticles while factoring in the size and shape related properties. We demonstrate the importance and effect of anisotropicity of a gold nanoparticle on the colloidal behavior and interaction with ecologically susceptible aquatic biota. We also show how readily available characterization techniques can be utilized to monitor and assess the fate/transport of this class of nanoparticles. We further describe and investigate the relationship between the aspect ratio (AR) of these elongated gold nanoparticles with clearance mechanisms and rates from the aquatic suspension columns including aggregation, deposition, and biopurification. We illustrate how a fresh water filter-feeder bivalve, Corbicula fluminea, can be used as a model organism to study the size and shape-selective biofiltration and nanotoxicity of elongated gold nanoparticles. The results suggest that biofiltration by C. fluminea increases with an increase in the size and AR of gold nanoparticle. We develop a simple nanotoxicity assay to investigate the short-term exposure nanotoxicity of gold nanoparticles to C. fluminea. The toxicity results indicate that for the tested concentration and exposure period that gold nanoparticles were not acutely toxic (i.e., not lethal). However, gold nanoparticles significantly inhibited the activities of some antioxidant enzymes in gill and digestive gland tissues. These inhibitions could directly affect the resistance of these organisms to a secondary stressor (temperature, pathogens, hypoxia etc.) and threaten organismal health. / Ph. D.
40

Photoacoustic drug delivery using carbon nanoparticles activated by femtosecond and nanosecond laser pulses

Chakravarty, Prerona 09 January 2009 (has links)
Cellular internalization of large therapeutic agents such as proteins or nucleic acids is a challenging task because of the presence of the plasma membrane. One strategy to facilitate intracellular drug uptake is to induce transient pores in the cell membrane through physical delivery strategies. Physical approaches are attractive as they offer more generic applicability compared with viral or biochemical counterparts. Pulsed laser light can induce the endothermic carbon-steam reaction in carbon-nanoparticle suspensions to produce explosive photoacoustic effects in the surrounding medium. In this study, for the first time, these photoacoustic forces were used to transiently permeabilize the cell membrane to deliver macromolecules into cells. Intracellular delivery using this method was demonstrated in multiple cell types for uptake of small molecules, proteins and DNA. At optimized conditions, uptake was seen in up to 50% of cells with nearly 100% viability and in 90% of cells with ≥90% viability, which compared favorably with other physical methods of drug delivery. Cellular bioeffects were shown to be a consequence of laser-carbon interaction and correlated with properties of the carbon and laser, such as carbon concentration and size, laser pulse duration, wavelength, intensity and exposure time. Similar results were observed using two different lasers, a femtosecond Ti: Sapphire laser and a nanosecond Nd: YAG laser. Uptake was also shown in murine skeletal muscles in vivo with up to 40% efficiency compared to non-irradiated controls. This synergistic use of nanotechnology with advanced laser technology could provide an alternative to viral and chemical-based drug and gene delivery.

Page generated in 0.0578 seconds